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ABSTRACT 

Staphylococcal enterotoxin B (SEB) is a potent activator of the Vβ8+T-cells leading to 

the proliferation of nearly 30% of the T-cell pool. As a consequence, excessive amounts 

of cytokine mediators are released leading to extensive tissue damage and sometimes 

toxic shock and death. Due to the ease with which SEB can be aerosolized 

anddisseminated, it is considered a biological weapon. In the current study, we 

investigated the pro-inflammatory effects of SEB in two mouse models of acute 

inflammatory lung injury. Specifically, while inflammatory cues are known to elicit 

changes in key transcriptional factors and gene expression, we explored for the first time, 

the role of microRNA following SEB exposure.  We found that C57BL/6 mice exposed 

to a single dose (50 μg/mouse) of SEB demonstrated symptoms of pulmonary 

inflammation characterized by cellular infiltration, histopathological damage and the 

release of copious amounts of IFN-γ. Upon conducting microRNA microarray analysis 

and applying cutting-edge bioinformatics analysis, we identified the overexpression of 

miR-155 and the subsequent repression of its target gene Socs1 following SEB exposure. 

Further, through the use of miR-155
-/-

 mice, we demonstrated the critical role for SEB-

induced miR-155 in mediating damage. In a more severe model of acute inflammatory 

lung injury, C3H/HeJ mice were exposed to two smaller quantities (2 μg and 5μg/ mouse) 

of SEB given two hours apart. As a result, mice succumb to vascular leak, excessive 

cellular infiltration and exaggerated cytokine and chemokine release. Pulmonary damage 

is associated with the dysregulation of several miRNA. Those miRNA that were 
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overexpressed were found to target key regulators of inflammation and those that were 

underexpressed allowed for the expression of pro-inflammatory genes demonstrating that 

several SEB-inducing miRNA act in concert to orchestrate inflammation. Therapeutic 

strategies to combat inhalation exposure to SEB are either lacking in their efficacy or  

with regards to acute inflammatory lung injury, limited to supportive care. As a result, we 

investigated the role of the marijuana cannabinoid- Delta-9-Tetrahydrocannabinol(THC), 

a known anti-inflammatory agent in the treatment of SEB-triggered inflammation. 

Interestingly, C3H/HeJ that succumbed to SEB toxicity, were completely protected by 

THC treatment. Upon investigation of the anti-inflammatory nature of THC, we 

demonstrated for the first time the ability of THC to modulate a prominent inflammatory 

miRNA cluster (miR-17-92) involved in activation of the PI3K/AKT signaling pathway 

THC, by acting as an inhibitor of this pathway, via the downregulation of the cluster, 

induces T-regulatory cells, reduces cellular proliferation and decreases IFN-γ production.  

Taken together, our studies highlight the importance of miRNA in SEB-induced 

inflammatory damage. Moreover, we provide further insight into the anti-inflammatory 

properties of THC and emphasize its potential as a powerful therapeutic agent. 
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CHAPTER I: INTRODUCTION 

 

1.1 STAPHYLOCOCCAL ENTEROTOXIN B (SEB) 

The gram positive bacterium Staphylococcus aureus is an opportunistic pathogen that 

persistently colonizes up to 20% of healthy humans thereby increasing their susceptibility 

to infections (Kuehnert et al., 2006; Wertheim et al., 2005).  Some of the most common 

infections caused by the pathogen are, bacteremia, endocarditis, septic shock, food-borne 

gastroenteritis and toxic shock syndrome making Staphylococcus aureus a leading cause 

of community and hospital acquired morbidity (Frank et al., 2010; Huang et al., 1998).         

             The bacterium possesses an arsenal of virulence factors that contribute to its 

pathogenesis.  Some of these factors include the expression of surface proteins to aid in 

adhesion, the formation of biofilms to enable persistence , the secretion of enzymes such 

as proteases and lipases to ensure immune evasion and  importantly, the production of 

inflammation inducing- enterotoxins (Archer, 1998; Gordon et al., 2008).   

              Staphylococcal enterotoxins (SEs) are a group of ~23-30 kDA secreted, acid and 

heat stable proteins that share amino-acid sequence homology and are functionally 

similar (Balaban et al., 2000). Structurally, although these proteins all comprise of tightly 

packed β-sheets and α-helical domains separated by a shallow groove, they differ in their 

interaction with the major histocompatibility class II (MHC II) and in their T-cell 

receptor specificity (Argudin et al., 2010). Amongst the large group of SEs (SE A-V and 

toxic shock staphylococcal toxin-1, the TSST-1), SEA and SEB are the best studied.
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While, SEA is the most common toxin associated with staphylococcal food poisoning 

(Pinchuk et al., 2010), the focus of our study is SEB. SEB is the only SE studied with 

regards to its role as a potential biological weapon. Since it is easy to produce in the 

laboratory, is a stable and robust protein and can be easily aerosolized, the Center for 

Disease Control and Prevention (CDC) has classified SEB as a ‘select’ agent (Pinchuk et 

al., 2010). In fact, the study of SEB was carried out in the 1960’s when the USA had an 

active offensive biological warfare program. Since then, a number of facets of SEB 

exposure have been elucidated. 

            SEB exposure elicits a wide range of symptoms depending on the site of entry. 

Ocular exposure to SEB leads to conjunctivitis, while the ingestion of SEB results in 

nausea, vomiting and diarrhea within 6 hours of exposure. The inhalation of the toxin can 

lead to fever, respiratory damage, acute respiratory distress syndrome (ARDS) and death. 

Furthermore, exposure to the toxin under battlefield-induced stress exacerbates the 

severity of symptoms which include vasodilation and drop in blood pressure.  

            The potency of SEB stems from the fact that it is a superantigen, a term used to 

describe antigens that hyper-activate the immune system. Unlike conventional antigens 

that undergo antigen processing by an Antigen Presenting Cell (APC) and are displayed 

to a T-cell via the MHC II, leading to the activation of a fraction (~0.001%) of T-cells, a 

superantigen, strongly stimulates T-cells comprising the Vβ8 domain of the T-cell 

receptor independent of antigen recognition and processing. As a result, up to 30% of the 

T-cells are activated and clonally expanded. This initial binding is followed by 

engagement of co-stimulatory molecules such as CD69, CD28, CD80 that help sustain 

activation and trigger downstream signaling cascades such as the MAPK, PI3K/AKT, 
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NFκB pathways. It is well established that several cytokines such as IL-1, TNF-α, IL-2, 

IFN-γ, IL-6, MCP-1 are induced upon activation of these key inflammatory signaling 

pathways. The release of these cytokines after SEB exposure results in further 

proliferation of T-cells and the recruitment of other immune cell subsets. Thus, SEB 

exposure involves the activation of the immune system and the establishment of a strong 

inflammatory environment that can now mediate extensive tissue damage.  

         Treatment against the harmful effects of SEB exposure has previously been 

explored and has shown some therapeutic promise. For example, the use of a 

combination of monoclonal antibodies confers protection from SEB-induced toxic shock 

in HLA DR3 transgenic mice (Varshney et al.). The use of synthetic peptides elicits  anti-

SEB antibodies (Visvanathan et al., 2001) and mimetic peptides of CD28 decrease 

production of IL-2, IFN-γ thereby protecting mice from SEB-induced shock (Chen et 

al.).In addition, the use of immunosuppressive glucocorticoids such as Dexamethasone 

and Rapamycin have demonstrated protective effects in mice exposed to SEB by 

blocking SEB-induced cytokines and chemokines and suppressing NFκB activation. On 

the other hand, several other therapeutic strategies to combat SEB exposure have been 

limited in their efficacy. For example, SEB-peptide antagonists are unable to prevent T-

cell activation and cytokine production in vitro and in vivo in HLA II transgenic mice 

(Tilahun et al., 2011). The use of TCR Vβ8 mimics that interfere with the binding of SEB 

have short half-lives in rabbits and would prove ineffective in the clinic (Strandberg et 

al.).  

          In conclusion, SEB, by virtue of being a superantigen, elicits a strong immune 

response characterized by cellular proliferation, excessive release of cytokines and 
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chemokines and the simultaneous activation of several key inflammatory pathways. As a 

result, exposure to the toxin has a number of far reaching effects in humans ranging from 

food poisoning to death. While a number of treatment modalities have been studied to 

combat the toxicity induced by SEB, therapeutic interventions that are efficacious and 

manage inflammation in the clinical setting is still lacking.  

1.2 microRNA 

Cells contain a number of non-coding RNA (ncRNA) that are structural, catalytic or 

regulatory in function but do not encode protein (Eddy, 2001). One such class of small 

regulatory non-coding RNAs that are newly discovered and have generated significant 

interest in the scientific community is microRNA (miRNA).  

           The first miRNA- lin-4 and let-7 were identified in C. elegans and found to be 

critical in the developmental stages of the nematode. It was observed that lin-4 was 

partially complimentary to the 3’ Untranslated region (UTR) of lin-14 and lin28, genes 

that encode protein necessary for the progression of larval stages. Similarly, let 7 bound 

to the 3’UTR of lin-41 and hbl-1, hindering development of the worm (Lin et al., 2003; 

Sasaki et al., 2010; Vella et al., 2004). This discovery, hinted towards a novel form of 

gene regulation that could influence development and prompted the exploration of these 

miRNA in other species. Since then, hundreds of miRNA have been identified in plants, 

animals, viruses and unicellular algae and at least a thousand miRNA have been found in 

humans likely regulating 30-90% of genes (Dai et al., 2011; Molnar et al., 2007). These 

miRNA serve as key regulators of genes in myriad biological processes such as cellular 

proliferation, differentiation, signal transduction, development of organs, apoptosis and 

immune response (Sonkoly et al., 2008).    
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              The biogenesis of miRNA begins with the transcription of primary miRNA 

transcripts (pri-miRNA) by RNA polymerase II that are up to thousands of nucleotides 

long and contain hairpin structures. Classically, the pri-miRNA is processed and cleaved 

in the nucleus by a complex known as the Microprocessor comprising of RNase III 

enzyme Drosha and the double-stranded RNA binding domain protein DGCR8 yielding a 

~70 nt precursor miRNA (pre-miRNA). Exportin 5 subsequently transports the pre-

miRNA into the cytoplasm where it is cleaved by RNase III enzyme Dicer to yield a ~22 

nucleotide mature miRNA: miRNA* duplex product. This duplex is loaded into the 

Argonaute (Ago) protein to form a RNA-inducing silencing complex (RISC). Following 

the degradation of the miRNA* strand within the RISC, the miRNA strand that remains, 

guides the RISC to mRNA targets and allows for the interaction of the miRNA with the 

3’UTR of target mRNA. 2-8 nucleotide regions within the 3’UTR, known as seed 

sequences are important for the miRNA recognition of the target gene. Consequently, 

mRNA is cleaved and degraded if the miRNA displays perfect or near-perfect 

complementarity to the 3’UTR, otherwise, as is the case with most miRNA, the miRNA 

and its respective target base-pair imperfectly resulting in the repression of translation 

(Bushati et al., 2007; Plaza et al., 2004).  

              As mentioned above, miRNA have been found to regulate almost every cellular 

process in the body. This includes actively participating and orchestrating the 

development and function of the innate and adaptive arm of the immune system. A few 

studies have identified miRNA in the regulation of hematopoietic stem cells (HSC), 

where CD34+ human stem and progenitor cells express numerous miRNA (Georgantas et 

al., 2007; Mandal et al., 2005). The Homeobox (HOX) family of genes which are 
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important in the regulation of HSC stem cells, are targeted by individual miRNA such as 

miR-196b, miR-126 (Shen et al., 2008; Yekta et al., 2004). Furthermore, the role of 

miRNA has also been established in the function and development of dendritic cells 

(DC), macrophages, Natural killer (NK) cells, granulocytes and monocytes. For example, 

miR-223 targets transcription factor E2F1, which results in increased granulocyte 

differentiation (Pulikkan et al.). miR-424 enhances monocyte differentiation by binding 

NFI-A which in turn causes the activation of macrophage colony-stimulating factor 

receptor (M-CSFR) (Rosa et al., 2007). Similar to their roles in the innate system, 

miRNA control the development, differentiation and function of cells of the adaptive 

arm. For example, the miR-17-92 cluster increases T-cell survival during the double 

negative 2 (DN2) stage of thymopoiesis. The absence of this cluster, also leads to the 

lymphoproliferation of B and T-cells (Xiao et al., 2008).  miR-181a functions to enhance 

TCR signaling strength (Greenhough et al., 2007), while miR-155 promotes Th1 

differentiation (Plaza et al., 2007). Furthermore, the conditional deletion of Dicer or 

Drosha in T-regulatory (T-regs) cells causes lethal autoimmune inflammatory disease 

(Zhou et al., 2008). Thus, given that miRNA are critical regulators of gene expression, it 

is not surprising that they also control aspects of the immune system. By serving as fine 

tuners of important stages of development and differentiation, they maintain and enable 

proper immune response and homeostasis. However, what is interesting to this study is 

the possibility of a strong dysregulation of miRNA. For instance, what is the role of 

miRNA during inflammatory response and disease? By regulating important 

inflammatory genes and transcription factors, can miRNA be implicated in 

inflammation? Can we target key miRNA involved in inflammatory disease and thus 
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prevent inflammatory damage? While several studies have already sought to answer 

some of these questions a brief overview of miRNA in inflammation is presented below.  

         Inflammation is important for host defense against pathogens. However, the 

hyperactivation of the inflammatory response triggered by exposure to bacterial LPS, 

peptidoglycan, enterotoxins such as SEB can cause host tissue damage and disease. It is 

important that molecules that govern the initiation, progression and resolution of 

inflammation be properly regulated. While an inflammatory insult elicits intricate 

changes in the transcriptional landscape, we have now learned that the dysregulation of 

miRNA accompany these molecular changes. For example, murine macrophages 

activated with Poly (I:C) and interferon β results in the activation of the MAP kinase 

JNK, which in turn leads to the induction of  miR-155(O'Connell et al., 2007). Similarly, 

the overexpression of miR-21 in myeloma cells is dependent on the expression of STAT3 

(Loffler et al., 2007). miR-146a is induced upon lipopolysaccharide (LPS) stimulation in 

human monocytes to function as a negative regulator of Toll-like receptor (TLR) 

signaling by targeting TRAF6 and IRAK4 (Baltimore et al., 2008).  

            Evidently, inflammatory cues alter the expression of several miRNA. Moreover, 

aberrant expressions of several miRNA have been  implicated in inflammatory disease 

and autoimmunity. miR-326 is overexpressed in Multiple Sclerosis (MS) and plays a role 

in Th17 cell differentiation (Miethke et al., 1993). Murine models of arthritis have 

demonstrated the role for miR-182 in regulating B and T-cell function (Stittrich et al.). 

Similarly, the introduction of synthetic let-7 mimic to mice in asthma represses IL-13 and 

ameliorates airway inflammation(Polikepahad et al.).  
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                 In summary, miRNA have arisen as important regulators of gene expression 

serving critical roles in mammalian inflammatory response. Given that several miRNA 

target a number of potential genes and owing to the infancy of the miRNA field, a 

number of features of miRNA-mRNA interactions remain to be uncovered. Nevertheless, 

we have begun to carefully study the role of individual miRNA in disease process to 

identify novel biomarkers, establish unique therapeutic agents that can directly modulate 

them with the ultimate goal of curing and preventing inflammation and disease.  

1.3 DELTA-9 TETRAHYDROCANNABINOL (THC) 

The flowering tops and leaves of the cannabis sativa (marijuana) plant contain 

biologically active constituents known as cannabinoids. Amongst the approximately 60 

cannabinoids produced, Delta-9-Tetrahydrocannabinol (THC) is the major psychoactive 

component (Klein et al., 2001). Although anecdotal evidence regarding its therapeutic 

properties has existed for thousands of years, it was the isolation and elucidation of its 

structure in 1964 that prompted its study. Since then, a number of synthetic analogues 

have been developed that mimic its analgesic, anti-emetic and immunomodulatory 

properties in vivo.  

                Cannabinoids mediate their action through the ligation of two main 

cannabinoid receptors, the CB1 and CB2. These receptors are G-protein coupled single 

polypeptides with an extracellular N-terminus and intracellular C-terminus with seven 

transmembrane helices. While the CB1 receptor is predominantly located on the 

hippocampus and basal ganglia in the brain, it is also expressed on peripheral tissues such 

as the liver, pancreas and immune cells. The CB2 receptor is mainly expressed in the 
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periphery and particularly in immune cells such as B-cells, NK cells, monocytes, 

Peripheral mononuclear cells (PMN) and T-cells (Klein et al., 2003).  

                The presence of CB receptors on immune cells suggests that cannabinoids are 

immunomodulatory. THC in particular has demonstrated a number of anti-inflammatory 

properties such as the modulation of cytokines, the modulation of T-cells and the 

induction of apoptosis (Nagarkatti et al., 2009). For example, splenocytes activated with 

pokeweed mitogen (PWM) and treated with THC lead to a decrease in Th1 cytokine 

IFNγ and simultaneous increase in Th2 cytokines IL-4 and IL-10 (Newton et al., 1998). 

Similarly, THC treatment of mice given Legionella pnuemophila succumbed to infection 

due to the decrease in IFNγ and IL-12 and the increase in IL-4, suggesting that the THC 

mediated Th1 to Th2 cytokine shift contributed to enhanced infection (Klein et al., 2000). 

THC has also been demonstrated to induce apoptosis in T-cells, B-cells and macrophages 

(Nagarkatti et al.).  Furthermore, THC mediated apoptosis was found to be mediated 

through BCL2 and the activation of caspases (Nagarkatti et al., 2009). Our laboratory has 

demonstrated that THC also induced immunosuppressive immune cells. For example, in 

a mouse model of Con-A induced hepatitis, THC treatment ameliorated liver injury by 

the induction of Foxp3+ T-regulatory cells(Hegde et al., 2008). We have also observed 

that THC induces functional myeloid derived suppressor cells (MDSC) through the 

activation of the CB1 and CB2 receptors further demonstrating the potent anti-

inflammatory properties of THC (Hegde et al.).  

                Recently, we have reported novel mechanisms of action for THC. It appears 

that THC can activate the expression of Th2 cytokine genes, while suppressing the 

signals to Th1 cytokines via histone modifications (Yang et al.). Moreover, we have also 
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found that THC-induced MDSCs displayed a distinct miRNA profile compared to 

MDSCs derived from naïve bone marrow, suggesting that THC induced miRNA may 

play a functional role in the development of these MDSCs (Hegde et al.).  

In conclusion, although a number of studies have explored the role of THC as an anti-

inflammatory agent and have established its efficacy in modulating immune response, we 

are only now discovering unique properties that underlie its mechanism, the examination 

of which will enable us to further exploit its therapeutic properties.  

1.4 PROBLEM AND HYPOTHESIS 

The superantigenic property of SEB makes it an ideal candidate to be used as a biological 

weapon. Studies have established that exposure to the toxin results in an exaggerated 

immune response due to the secretion of a number of inflammatory mediators. With the 

discovery that inflammatory cues can trigger the expression of a unique class of gene 

regulators, the miRNA, it was unclear if SEB exposure would affect the miRNA profile 

in mice and if the miRNA played a role in SEB-mediated damage to the lung. Therefore, 

we hypothesized that exposure to the toxin results in the dysregulation of miRNA. 

Furthermore, we also wanted to establish the role of the marijuana derived cannabinoid, 

THC, known for its anti-inflammatory properties in ameliorating SEB-induced acute 

inflammatory lung injury. Accordingly, we hypothesized that THC treatment would 

prevent SEB-mediated mortality of mice and does so by the modulation of inflammation 

specific miRNA.
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CHAPTER II: Staphylococcal enterotoxin B (SEB) - induced microRNA-155 targets 

suppressor of cytokine signaling-1 (SOCS1) to promote acute inflammatory lung injury. 

2.1 INTRODUCTION 

Staphylococcal Enterotoxin B (SEB), a superantigen produced by Staphylococcus aureus 

has  deleterious effects in humans such as food poisoning (Pinchuk et al., 2010) and toxic 

shock (Savransky et al., 2003). Because it can be easily aerosolized, SEB is classified as 

a Category B agent by the Centers for Disease Control and Prevention (Ulrich, 2001). 

Upon inhalation exposure, SEB can trigger acute inflammatory lung injury characterized 

by immune cell infiltration, excessive cytokine production, tissue damage and pulmonary 

edema (Neumann et al., 1997; Saeed et al.).     

         Due to the distinct manner in which SEB binds to the non-polymorphic regions of 

MHC II on antigen presenting cells and the specific Vβ regions of the T-cell receptor 

(TCR) such as  murine Vβ8 (Bavari et al., 1995), SEB exposure leads to the activation 

and proliferation of a large population (5-30%) of T-lymphocytes (Kozono et al., 1995).  

Activation of such a substantial number of T-lymphocytes results in the robust production 

of inflammatory cytokines such as IL-2, TNF-α and IFN-γ (Bette et al., 1993; Miethke et 

al., 1993). In most cases, IFN-γ is the main culprit in mediating the damaging and often 

lethal effects seen upon SEB exposure. For example, transgenic mice deficient in IFN-γ, 

were protected from SEB-mediated Toxic Shock Syndrome (TSS) and 
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subsequent mortality(Tilahun et al., 2011). Additionally, the neutralization of IFN-γ, after 

SEB  exposure was shown to prevent lethal systemic inflammation (Florquin et al., 1995) 

further suggesting the importance of SEB-mediated IFN-γ production. While the 

interaction between SEB and TCR, along with the subsequent T-cell proliferation and 

cytokine secretion have been extensively studied (Fleischer et al., 1991; Herman et al., 

1991; Saeed et al., 2012), the role of miRNA in mediating SEB-induced inflammation 

has not yet been elucidated.  

MicroRNA (miR) are ~21-23 nt long, single stranded non-coding RNA molecules 

that can translationally repress or target mRNA for degradation, thereby acting as 

primary modulators of gene expression (Cai et al., 2009). Several studies have 

demonstrated a role for miR in modulating immune responses under various 

inflammatory conditions (O'Connell et al., 2012). For example, while miR-125b is highly 

expressed in naïve CD4+ T-cells, it becomes significantly downregulated upon T-cell 

activation (Rossi et al., 2011). Similarly, studies have demonstrated that overexpression 

of miR-17-92 cluster in T-cells leads to lymphoproliferative disorder due to the 

repression of the pro-apoptotic molecule, BIM (Xiao et al., 2008). Furthermore, mice 

deficient in miR-155 are resistant to developing experimental autoimmune 

encephalomyeltis, a mouse model of multiple sclerosis (O'Connell et al., 2010), while the 

overexpression of miR-155 exacerbates the symptoms associated with the disease. 
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Taken together, these studies strongly suggest that miRs play a major role in modulating 

immune cell activation, particularly T-cells, as well as promoting pro-inflammatory 

responses.  

In the current study of SEB-induced acute inflammatory lung injury, we applied 

microarray analysis and quantitative real time PCR (q-RT PCR) to establish important 

miRs that are dysregulated in response to SEB. Further, our data identified miR-155 as a 

major contributor to SEB-mediated lung inflammation. While it is known that SEB 

exposure leads to inflammation and the production of copious amounts of IFN-γ, we 

provide mechanistic insight through gain and loss of function experiments, into the role 

of miR-155 in this process. Our results may present an opportunity to further 

therapeutically target miR-155 in the treatment of SEB-mediated acute inflammatory 

lung injury.  

2.2 MATERIALS AND METHODS 

Mice  

Female C57BL/6 mice (6-8 weeks) were purchased from the National Cancer Institute 

(NCI). miR-155
-/-

 (B6.Cg-Mir155 
tm1.1 Rsky

/J) were purchased from The Jackson 

laboratory.  All mice were housed under pathogen free conditions at the Animal Resource 

Facility (ARF), University of South Carolina (USC) School of Medicine.  The use of 

vertebrate animals in the experiments performed was pre-approved by the Institutional 

Animal 
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Care and Use Committee (IACUC) at USC.  This study was carried out in strict 

accordance with the recommendations in the Guide for the Care and Use of Laboratory 

Animals of the National Research Council (2011) 

Induction of SEB-induced acute lung injury (ALI)  

SEB was obtained from Toxin Technologies (Sarasota, Florida).  SEB dissolved in sterile 

PBS (2 mg/mL) was administered by the intranasal (i.n) route in a volume of 25 μL for a 

dose of 50 μg per mouse, as described (Rieder et al., ; Rieder et al., ; Saeed et al.) . Mice 

were euthanized 48 hours after SEB exposure.   

Lung histopathological analysis 

At the time of euthanasia, lungs were obtained and fixed in 10% formalin.  The tissue 

was then paraffin embedded and serial sections (5 μm) were made.  The sections were 

subsequently deparaffinized by dissolving with xylene, followed by rehydration in 

several changes of alcohol (100%, 95%, and 90%).  The slides were then stained with 

hematoxylin and eosin (H&E) and evaluated with a Nikon E600 light microscopy system.   

Antibodies 

Fluorescein isothiocyanate-conjugated anti-CD8 (clone: 53.6.7) and phycoerythrin-

conjugated anti-CD4 (clone: GK1.5) Abs were purchased from Biolegend (San Diego, 

CA).   

Preparation of lung-infiltrating cells and flow cytometry 

Mice were exposed to SEB as described above.  Forty eight hours after SEB exposure, 

lungs were harvested and homogenized using Stomacher
®

 80 Biomaster blender from 

Seward (Davie, FL) in 10 ml of sterile PBS. After washing with sterile PBS, the cells 
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were carefully layered on Ficoll - Histopaque ®-1077 from Sigma-Aldrich (St Louis, 

MO) and separated by density gradient centrifugation at 500 x g for 30 minutes at 24°C 

with brake off. The mononuclear cell layer isolated was then enumerated using the 

Trypan blue exclusion method.  To determine the subsets of immune cells infiltrating the 

lung, cells were stained with fluorescent conjugated antibodies (anti-CD4, anti-CD8) and 

analyzed using the Beckman Coulter 500 Flow cytometer (Indianapolis, IN). 

Recovery of broncheoalveloar lavage fluid (BALF) and cytokine detection 

Forty-eight hours after SEB exposure, mice were euthanized and tracheae from vehicle or 

SEB exposed mice were tied with a suture and the lung was excised as an intact unit. 

With 1 ml sterile ice-cold PBS, the trachea was lavaged to collect the BALF fluid.  

Cytokine analysis for interferon-γ (IFN-γ) was carried out using BALF.  All cytokines 

were measured using Biolegend (San Diego, CA) ELISA MAX™ Standard kits.   

Total RNA isolation  

Total RNA (including small RNAs) was isolated from lung-infiltrating mononuclear cells 

or in vitro from lymph nodes or splenocytes using miRNeasy kit from Qiagen (Valencia, 

CA) following manufacturer’s instructions. The purity and concentration of the RNA was 

confirmed spectrophotometrically, while the integrity of miRNA was further  assessed 

using Agilent 2100 BioAnalyzer (Agilent Tech, Palo Alto, CA).  

miRNA expression profiling and analysis  

To profile miRNA expression in the lung, the Affymetrix GeneChip 
® 

miRNA 1.0 array 

platform was used. The array which comprises of 609 mouse miRNA probes makes use 

of FlashTag™ Biotin HSR hybridization technique and was carried out according to 
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manufacturer’s instructions (Affymetrix, Santa Clara, CA).  Fluorescent intensities 

obtained from hybridization were log-transformed and visualized in the form of a 

heatmap. Hierarchical clustering was carried out using Ward’s method and Similarity 

measurement was calculated using half square Euclidean distance.  miRNA expression 

fold change obtained from the microarray were then further analyzed using the 

commercially available analysis tool Ingenuity Systems
®

-Ingenuity Pathway analysis –

(IPA), (Mountain View, CA, USA.) In brief, the dataset of 609 miRNA were uploaded 

into IPA and only miRNA that were 3 fold or higher were considered for analysis. Core 

analysis was carried out and a ‘Top Network’ of miRNA and its associated molecules 

was generated.  All microRNA microarray data were deposited in ArrayExpress database 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-2379. 

Analysis of miRNA target genes 

IPA was also used to determine and collate the highly predicted, moderately predicted 

and experimentally observed mRNA target genes of those miRNA that were highly (≥3 

fold)  upregulated using IPA’s miRNA target filter tool. These targets were further sorted 

based on their role in cytokine signaling, cellular growth and proliferation and cellular 

immune response. Additionally, to assign Immunological functions to our list of miRNA 

targets, Gene Ontology (GO) mapping of miRNA target genes was carried out using 

Cytoscape 3.0.1 equipped with ClueGO and CluePedia applications.  

Quantitative real-time PCR (qRT-PCR) 

Total RNA (miRNA and mRNA) were converted to cDNA using the miScript cDNA 

synthesis kit (Qiagen) according to manufacturer’s instructions.  For miRNA validation, 

the miScript SYBR Green PCR kit (Qiagen) was used and fold change of miRNA was 

https://www.ebi.ac.uk/arrayexpress/
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determined using 2
-ΔΔCt

 method.  Snord 96a was used as small RNA endogenous control.  

For mRNA validation, SSO advanced™ SYBR Green PCR kit from Biorad (Hercules, 

CA) was used according to manufacturer’s instructions and β-actin was used as the 

endogenous control.  The following primers were used: β-actin (F) 5’-

GGCTGTATTCCCCTCCAT G-3’ and (R) 5’-CCAGTT GGTAACAATGCCATGT-3’; 

SOCS-1 (F) 5’-GGTTGTAGCAGCTTGTGTC-3’ and (R) 5’-

AATGAAGCCAGAGACCCTC-3’; IFN-γ (F) 5’-GCGTCATTGAATCACACCTG-3’ 

and (R) 5’-GAGCTCATTGAATGCTTGGC-3’  

Transfection with miR-155 mimic and inhibitors 

Lymph nodes (axillary and inguinal) from naïve C57Bl/6 mice were harvested and 

cultured in 10 ml of complete media at 37° C and 5% CO2.  Complete media comprised 

of  RPMI 1640 medium (Gibco Laboratories, Grand Island, NY) supplemented with 10% 

FBS, 10mM L-glutamine, 10mM Hepes, 50 μM  β-Mercaptoethanol , and 100 μg/mL 

penicillin.  Cells were seeded at 2x10
5
 cells in 24 well plates and transfected with either 

40 nM synthetic mmu-miR-155 -3p miScript miRNA mimic 

(CUCCUACCUGUUAGCAUUAAC) or AllStar negative control siRNA. For inhibition 

of miR-155, cells were activated with SEB (1 μg/ml) and treated with 100 nM Anti-

mmu-miR-155-3p miScript miRNA inhibitor (CUCCUACCUGUUAGCAUUAAC) or 

miScript Inhibitor negative control for 24 hours using HiperFect transfection 

reagent(Qiagen) according to manufacturer’s instructions.   

Luciferase assay 

The following plasmids were purchased from GeneCopoeia (Rockville, MD) – 3’UTR- 

Socs1 (MmiT028883) and control plasmid (CmiT000001-MT01).   Chinese Hamster 

http://www.genecopoeia.com/product/search/view_seq_mirna_target.php?cid=&type=utr3&prod_id=MmiT028883


www.manaraa.com

18 

 

Ovary (CHO) cells were co-transfected with 100 ng of plasmid and 100nM of miRIDIAN 

microRNA mmu-miR-155-5p mimic or miRIDIAN microRNA mimic negative control 

using DharmaFECT DUO transfection reagent following manufacturer’s instructions 

(Thermo Scientific, Pittsburgh, PA). 24 hr following transfection, Luciferase activity was 

measured using LucPair ™ miR-Duo Luciferase Assay kit from GeneCopoeia.  

Statistics 

All statistical analyses were carried out using GraphPad Prism Software (San Diego, 

CA).  In all experiments, the number of mice used was 4-5 per group, unless otherwise 

specified.  Results are expressed as means ± SEM. Student’s t-test was used to compare 

WT and miR-155
-/-

 data, whereas multiple comparisons were made using one-way 

analysis of variance (ANOVA), followed by post hoc analysis using Tukey’s method.  A 

p-value of <0.05 was considered statistically significant. Individual experiments were 

performed in triplicate and each experiment was performed independently at least three 

times to test reproducibility of results. 

2.3 RESULTS 

SEB exposure triggers inflammation in the lung.   

Previously, a single dose of SEB (50 μg) by intranasal delivery was found to induce 

cellular infiltration, increase cytokine production, cause histopathological lesions and 

edema in C57BL/6 mice (Rieder et al., ; Rieder et al., ; Saeed et al.) mimicking the 

symptoms of acute inflammatory lung injury in humans (Wheeler et al., 2007). In this 

study, we first sought to investigate the inflammatory effect of SEB-exposure in the 

lungs.  Forty -eight hours after SEB exposure, H&E stained sections of the lungs from 
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SEB-exposed mice showed massive infiltration of cells and signs of edema as evidenced 

by fluid filled bronchioles (Figure 2.1A). Because SEB is a potent activator of T-cells, we 

examined the effect of SEB on T-cell subsets within the lung.  Immediately after 

euthanasia, the lungs were harvested and mononuclear cells were isolated from the lungs 

by density gradient centrifugation to determine the phenotypic characteristics of the cells. 

SEB exposure not only led to an overall increase in mononuclear cells but specifically, an 

increase in CD4+ and CD8+ T cells (Figure 2.1B) was seen. Because SEB exposure 

triggers an increase in IFN-γ, a major pro-inflammatory cytokine previously reported to 

orchestrate the inflammatory cascade and cause tissue damage(Miyata et al., 2008; Plaza 

et al., 2007; Tilahun et al., 2011), we analyzed the concentration of IFN-γ in the 

broncheoalveolar lavage fluid (BALF) and  found a high concentration (upto 3000 pg/ml) 

of IFN-γ in the lungs of SEB exposed mice (Figure 2.1C). These data suggested that SEB 

administration via the intranasal route triggers acute inflammation in the lungs.  

SEB exposure modulates miRNA expression in the lungs. 

The dysregulation of specific miRs in response to SEB exposure has not been elucidated.  

Because miRs play a critical role in mediating inflammation, we examined the miR 

profile after SEB exposure. Total miR was isolated from lung-infiltrating mononuclear 

cells and the relative abundance of miR in SEB exposed and vehicle treated mice was 

determined using microarray miRNA analysis.  A heatmap was generated based on 

hierarchical clustering of miRNA highlighting a stark difference between vehicle- and 

SEB-exposed mice (Figure 2.2A).  Further examination of miR expression revealed that 

of the 609 miR assessed, most remained unchanged, but a few showed significant up- or 

downregulation as seen in the fold change distribution plot (Figure 2.2B). Ingenuity 
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Pathway Analysis (IPA) generated a ‘Top Network’ of miR that comprised of five 

upregulated miRs, including miR-155, miR-31, miR-182, miR-20b, and miR-222 and 

their associated molecules (Figure 2.2C). This network was characterized by IPA as 

responses involving inflammation, cellular development, cellular growth and 

proliferation. To assign significant Immunological functions to the genes in the 

aforementioned ‘Top Network’, Cytoscape (ClueGO+CluePedia application) was 

employed. Gene Ontology (GO) mapping revealed that the genes associated with the miR 

in the ‘Top Network’ were functionally relevant to T-cell activation (GO: 0042110) and 

proliferation (GO: 0042098), Interferon-γ signaling (GO: 0060333) and Toll-like receptor 

signaling (GO: 0002224) (Figure 2.2D).  Next, we validated the expression levels of 

these miRs in lung infiltrating mononuclear cells by q-RT PCR , which corroborated the 

expression patterns seen using the microarray (Figure 2.2E). Amongst the miRs we 

validated, miR-155 was the most highly expressed (~ 8 fold) in the lungs upon SEB 

exposure.  Based on this, the role of miR-155 in the development of SEB-induced ALI 

was further investigated.  

miR-155 is important for SEB-mediated inflammation 

Because miR-155 was highly upregulated in response to SEB, we hypothesized 

that it might play a crucial role in facilitating the inflammation observed during the 

disease.  To that end, WT and miR-155 
-/- 

mice were exposed to SEB to determine the 

effects on disease parameters.  H&E stained sections of the lung revealed that WT mice 

exposed to SEB exhibited numerous layers of infiltration interspersed with edema.  

Interestingly, miR-155 
-/- 

mice exposed to SEB presented with almost normal lung 

architecture (Figure 2.3A). Additionally, the miR-155 deficient mice expressed 
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significantly decreased total numbers of mononuclear cells within the lung upon SEB 

exposure when compared to their WT counterparts.  Upon closer examination of the 

mononuclear cell phenotype within the lungs, absolute numbers of CD4+ and CD8+ in 

the miR-155 
-/- 

mice were decreased compared to WT mice (Figure 2.3B). Additionally, 

cytokine analysis of the broncheoalveolar lavage fluid (BALF) in the lungs of WT mice 

demonstrated high concentrations of pro-inflammatory cytokine IFN-γ. In contrast, IFN-γ 

levels were significantly diminished in miR-155
-/-

 mice (Figure2.3C). Taken together, 

these results provided clear evidence that miR-155
-/-

 mice were protected from SEB 

mediated ALI, suggesting that miR-155 plays a critical role in SEB-induced 

inflammation. 

miR-155 expression is critically linked to IFN-γ production 

Because SEB exposure leads to the release of copious amounts of IFN-γ and also results 

in increased miR-155 expression, we considered if there was a positive correlation 

between IFN-γ secretion and the expression of miR-155.  To explore this possibility, we 

first assessed the expression of IFN-γ after transfection of LN T-cells with a synthetic 

miR-155 mimic. Interestingly, we found a substantial increase in IFN-γ levels not only in 

WT mice (Figure2. 4A) but also in miR-155 deficient mice that were transfected with the 

mimic (Figure 2.4B). Additionally, inhibition of miR-155 with a synthetic inhibitor 

conversely resulted in the diminished expression of IFN-γ (Figure 2.4C), suggesting a 

crucial link between miR-155 expression and that of IFN-γ after SEB exposure.    

 

 



www.manaraa.com

22 

 

miR-155 targets Socs1, a negative regulator of IFN-γ 

miRs regulate the expression of genes by binding the 3’UTR of their respective target 

mRNA.  To examine the link between miR-155 and its potential target genes, we 

undertook a bioinformatics-based approach.  First, IPA miRNA target filter tools were 

used, selecting only those miR-155 target genes that were relevant to cytokine signaling, 

cellular immune response, and cellular growth and proliferation. Thirty six targets 

common to the filtering criteria applied were selected (Figure 2.5A).  Next, an IPA 

generated network was used to sort the targets based on those that were highly predicted 

and experimentally observed (Figure 2.5B).  Conclusively, a gene known as suppressor 

of cytokine signaling-1 (Socs1) was found to be a prominent miR-155 target due to miR-

155’s ability to bind to the 3’ UTR of the  Socs1mRNA (Figure2. 5C).  Because Socs1 is 

induced by IFN-γ and acts a negative regulator of IFN-γ, the relationship between miR-

155 and Socs1 in the context of IFN-γ production was examined.  miR-155
-/- 

mice that 

were exposed to SEB had significantly increased expression of Socs1 mRNA in lung 

infiltrating mononuclear cells when compared to WT (Figure 2.5D).  Accordingly, we 

hypothesized that miR-155 may target Socs1 to promote IFN-γ-mediated inflammation 

during SEB-induced inflammatory ALI. To confirm Socs1 as a miR-155 target, we first 

measured relative luciferase activity after co-transfection of miR-155 mimic and plasmid 

containing the 3’ UTR of Socs1. Compared to mimic control, miR-155 mimic led to a 

significant decrease in luciferase activity (Figure 2.6A) validating Socs1 as a target for 

miR-155. Next, the impact of miR-155 mimic on Socs1 levels was explored. We found 

that both, in WT (Figure 2.6B) and miR-155 deficient cells (Figure 2.6C) that were 

transfected with miR-155 mimic, Socs1 levels remained suppressed .On the other hand, 
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whereas SEB activation continued to lead to a repression in Socs1, miR-155 inhibition of 

SEB-activated cells, resulted in its derepression (Figure 2.6D), confirming the role of 

miR-155 in suppressing Socs1 during SEB-mediated activation of immune cells.   

2.4 DISCUSSION 

With the discovery of miR, a novel and exciting mechanism of gene regulation has 

arisen.  miRs are small non-coding endogenous RNA molecules that bind 3’ UTR of 

genes carrying complimentary sites.  A single miR usually targets several mRNA, acting 

as a fine-tuner of gene regulation rather than an on-off system (Sonkoly et al., 2009b). In 

the context of inflammation, miRs have been found within a variety of immune cells 

often targeting genes involved in the regulation of inflammatory response (Lindsay, 

2008). In the current study, we closely examined the miR profile after inhalation 

exposure to SEB. We observed that amongst the miRs that were dysregulated in response 

to SEB, miR-155 was one of the most significantly altered.  It has been reported that 

naïve CD4+T cells initially display low levels of miR-155, which is increased after the 

engagement of TCR by an antigen (Stahl et al., 2009; Thai et al., 2007). This is 

consistent with our observation that miR-155 was upregulated following SEB activation.    

Recent studies have reported that miR-155
-/-

 mice are resistant to EAE, 

demonstrating its importance in mediating disease development (Murugaiyan et al.).  In 

other studies, miR-155
-/-

 mice failed to control H. pylori infection due to defective Th1 

signaling (Oertli et al.). Moreover, in a mouse model of collagen-induced arthritis (CIA), 

the deficiency of miR-155 led to a decrease in pathogenic T-cells. In humans, it has also 

been reported that soldiers undergoing a battle-field like stress program demonstrated an 

increase in hsa-miR-155 levels in leucocytes exposed to SEB ex vivo (Muhie et al.) 
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indicating that stress- related inflammation could also potentially lead to the increase in 

miR-155.  The current study further suggests that the acute inflammatory response in the 

lungs to a bacterial superantigen is also regulated by miR-155, inasmuch as, SEB-

exposed miR-155
-/-

 mice having fewer infiltrating T-cells and almost normal lung 

histopathology.   

Usually an appropriate regulation of IFN-γ is necessary for mediating Th1 

responses and blunting infection (Schoenborn et al., 2007).  SEB exposure, however, 

causes an excessive release of IFN-γ.  T-cells exposed to IFN-γ, proliferate further, thus 

perpetuating a cycle of inflammation (Krakauer, ; Lee et al., 1990). Studies carried out 

with SEB activation of splenocytes have demonstrated that early cytokines released 

include IL-2 and TNF-α, followed by the massive production of IFN-γ by T-helper cells 

(Assenmacher et al., 1998).  Additionally, in vitro SEB activation of rat splenocytes 

results in the release of IFN-γ for up to 48 hours post-activation and promotes the 

proliferation of CD4+ T-cells, similar to that seen in mice and humans (Huang et al., 

1998).  We have noted in the current model (unpublished) that the peak of acute 

inflammatory lung injury occurs at 48 hours after SEB exposure.  In line with the typical 

kinetics of cytokine release seen with SEB activation, we did not detect early cytokines, 

TNF-α and IL-2, in the BALF at this time point (data not shown).  However, our data 

indicated substantial release of SEB-induced IFN-γ in WT mice suggesting that this 

particular cytokine may significantly contribute to SEB-induced inflammation.  

Moreover, the correlation between decreased IFN-γ in the BALF of miR-155
-/-

 mice 

exposed to SEB and lack of significant inflammation in the lungs is suggestive of a major 

role for IFN-γ in our model.    
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The relationship between miR-155 and IFN-γ has been briefly explored in 

previous studies.  For example, when miR-155 is overexpressed in human NK cells, the 

subsequent downregulation of a target, SHIP-1, promotes IFN-γ expression (Trotta et 

al.). During collagen-induced arthritis, miR-155-/- mice display significantly lower 

number of IFN-γ producing cells than WT (Kurowska-Stolarska et al.).  Likewise, our 

data demonstrated that while transfection with a synthetic miR-155 mimic, leads to the 

induction of IFN-γ, the blockade of miR-155, diminishes IFN-γ production. Our results 

clearly indicate that the SEB-mediated induction of IFN-γ can be explained, at least in 

part, by the induction of miR-155.     

To uncover the relationship between miR-155 and IFN-γ in response to SEB exposure, 

we employed bioinformatics tools and conducted extensive literature search. These 

efforts suggested suppressor of cytokine signaling 1 (SOCS1) as a possible link between 

miR-155 and IFN-γ.  SOCS1 belongs to a family of eight proteins (SOCS1–SOCS7) that 

regulate the production of several cytokines (Krebs et al., 2001). In particular, SOCS1 is 

induced by IFN-γ for auto regulation of the IFN-γ pro-inflammatory response by 

inhibiting the JAK/STAT1 signaling pathway (Tamiya et al.).  Recent experiments in 

numerous cell types have revealed that miR-155 targets SOCS1 (Cardoso et al., ; Jiang et 

al., ; Zhang et al.). For example, macrophages infected with an RNA virus demonstrated 

enhanced Type I interferon production due to miR-155 targeting of  Socs1 (Wang et al.). 

In the current study we noted that the miR-155
-/- 

mice that are exposed to SEB, showed 

increased expression in Socs1 mRNA levels compared to SEB exposed WT mice. The 

expression of Socs1 correlated inversely with IFN-γ production in the BALF. In addition, 
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our gain and loss of function studies with miR-155 mimic and inhibitor, clearly 

demonstrated that miR-155-mediated targeting of Socs1 regulates IFN-γ production. 

              The results of the present study highlight the role of miR-155 in SEB induced 

acute inflammatory lung injury. Specifically, we demonstrate that the high levels of IFN-

γ production associated with SEB exposure can be attributed to the miR-155 mediated 

repression of Socs1, a critical regulator of IFN-γ (Figure2. 7). Furthermore, the 

importance of miR-155 is made particularly evident as miR-155 deficient mice were 

found to be protected from SEB-mediated inflammation and acute lung injury, thereby 

suggesting that therapeutic targeting of miR-155 may be useful in the treatment of SEB-

triggered acute inflammatory lung injury.  
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Figure 2. 1. SEB induces lung inflammation (A) Representative H&E images (20x) of 

cross sections of the lung from mice exposed to either Vehicle or SEB. (B) Lung 

infiltrating mononuclear cells obtained by density gradient centrifugation and total 

number of viable cells were counted using a hemocytometer.  Cells were further stained 

with mAb to identify CD4+ and CD8+ cells and analyzed on a flow cytometer. The 

percentage of the immune cell subsets was multiplied by the total number of cells found 

in the lung and divided by 100 to yield the absolute cell numbers shown. (C) The 

concentration of IFN-γ protein present in the BALF was determined using a standard 

ELISA kit. Data are mean ± SEM (n=5) and are representative of three independent 

experiments. Statistical significance as compared to SEB + Vehicle is indicated as 

*p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001.   
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Figure 2.2.  SEB exposure leads to dysregulation of miRNA. Forty- eight hours after 

vehicle or SEB administration, miRNA was isolated from lung infiltrating mononuclear 

cells. (A) Heatmap depicting differential expression of miRNA in the lungs of mice 

exposed to SEB +vehicle as compared to vehicle. (B) Fold change distribution of the 609 

miRNA indicating several upregulated and downregulated miRNA (C) Ingenuity 

Pathway analysis generated ‘Top network’ with network function denoted as 

‘inflammatory response, cellular development, cellular growth and proliferation’. (D) 

Cytoscape generated Gene Ontology (GO) network based on Immunological processes 

for the molecules associated in ‘Top Network’ using ClueGo 2.0.7 application.  Analysis 

criteria consisted of two-sided hypergeometric test with Benjamini Hochberg correction. 

Only results with kappa score = 0.3 are displayed.  (E) qRT PCR validation of the IPA 

generated ‘Top upregulated miRNA’. Total RNA was isolated from lung infiltrating 

mononuclear cells. Snord96a was used as the small RNA endogenous control and the 

expression level of SEB-induced miRNA shown here was normalized to vehicle. Data is 

represented as mean ± SEM from replicate samples (*p<0.05, **p <0.01 as compared to 

vehicle).  
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Figure 2.3. miR-155 plays a critical role in SEB-induced ALI. WT (C57BL/6) and 

miR-155
-/- 

(B6.Cg-Mir155 
tm1.1 Rsky

/J) mice were exposed to SEB and euthanized 48 hours 

later. (A) Representative H&E images (20x) of sections of lung indicating immune cell 

infiltration. (B) Phenotypic characterization of cells infiltrating the lung was determined 

by staining of mononuclear cells with fluorescent conjugated mAb against CD4 and CD8. 

(C) Levels of IFN-γ cytokine in the BALF was determined by ELISA. Data are mean ± 

SEM (n=5) and are representative of two independent experiments. Statistical 

significance as compared to WT is indicated as *p<0.05, ** p<0.01.  
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Figure 2.4.  IFN-γ forms a critical link between SEB and subsequent miR-155 

induction.  (A) Lymph node (LN) T cells obtained from naïve wildtype (WT) mice were 

transfected either with miR-155 mimic (Mimic) or mimic control (Control) for 24 hours. 

IFN-γ levels were determined by RT-PCR. (B) LN T cells obtained from miR-155-/- 

were also transfected with 10nM miR-155 mimic or mimic control as indicated for 24 

hours and IFN-γ levels were assessed. (C) LN cells were activated with SEB (1μg/ml) for 

24 hours. Cells were then transfected with 50nM miR-155 inhibitor (Inh) or Inhibitor 

Control (Inh Control) for another 24 hours. IFN-γ levels were determined via RT-PCR. 

Data is represented as mean ± SEM from replicate samples. Statistical significance is 

indicated as *p<0.05, ** p<0.01, *** P<0.001, **** p<0.0001.  
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Figure 2.5. Identification of SEB-induced miR-155 targets. (A) miR-155 targets were 

filtered based on their role in cytokine signaling, cell growth and proliferation and 

cellular immune response using IPA. A proportional Venn diagram indicating the miR-

155 targets common to all three filtering criteria was generated. The list of targets is 

indicated within brackets and Socs1, a highly predicted target is highlighted (red). (B) 

IPA network was generated highlighting the highly predicted (yellow) and 

experimentally observed (brown) miR-155 targets, in addition to Socs1 (red), the target of 

interest. (C) Schematic illustration of the predicted target site for miR-155 within the 3’ 

UTR of Socs1 mRNA. (D) Total mRNA was isolated from lung-infiltrating mononuclear 

cells of WT and miR-155 
-/- 

mice exposed to SEB. Relative expression of Socs1 mRNA 

was determined by qRT PCR using β-actin as endogenous control. Data is represented as 

mean ± SEM from replicate samples .Statistical significance is indicated as *p<0.05, ** 

p<0.01, *** P<0.001, **** p<0.0001.  
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Figure 2. 6. miR-155 targets  Socs1. (A) Chinese Hamster Ovary (CHO) cells were co-

transfected with miR-155 mimic or mimic control along with plasmid containing either 

the 3’UTR of Socs1 or control plasmid for 24 hours. Relative luciferase activity (firefly 

normalized to renilla) was determined following transfection. (B) Lymph nodes (LN) 

cells obtained from naïve wildtype (WT) mice were transfected either with 40nM miR-

155 mimic (Mimic) or mimic control (Control) for 24 hours.  Socs1 levels were 

determined by RT-PCR. (C) LN cells obtained from miR-155-/- were also transfected 

with 40nM miR-155 mimic or mimic control as indicated for 24 hours and Socs1 levels 

were assessed. (D) LN cells were activated with SEB (1μg/ml) for 24 hours. Cells were 

then transfected with 100nM miR-155 inhibitor (Inh) or Inhibitor Control (Inh Control) 

for another 24 hours.  Socs1 levels were determined via qRT-PCR. Data is represented as 

mean ± SEM from replicate samples statistical significance is indicated as *p<0.05, ** 

p<0.01, *** P<0.001, **** p<0.0001.   
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Figure 2.7. Schematic of SEB-mediated downregulation of  Socs1 via miR-155. SEB 

exposure leads to the release of IFN-γ and subsequent expression of miR-155. miR-155 

mediated suppression of Socs1 prevents appropriate control of IFN-γ leading to cell 

proliferation and sustained cytokine signaling and damage to the lung.  
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CHAPTER III: Role of miRNA in the Regulation of Inflammatory Genes in 

Staphylococcal enterotoxin B-Induced Acute Inflammatory Lung Injury and Mortality. 

3.1 INTRODUCTION 

Staphylococcus aureus is a commonly occurring gram positive pathogen implicated in a 

number of community and nosocomial infections ranging from skin infections, 

endocarditis, sepsis and toxic shock (Lowy, 1998). Its pathogenicity can be attributed to a 

number of virulence factors such as polysaccharides, proteases, cell surface proteins and 

in particular, its ability to secrete potent toxins such as Staphylococcal enterotoxin B 

(SEB) (Foster, 2004). Commonly referred to as a superantigen, SEB poses a threat as a 

biological weapon because it is effective at smaller quantities, is easily aerosolized and 

disseminated. Consequently the Center for Disease Control and Prevention has deemed 

SEB, a Category B select agent (Ulrich, 2001).  

The consequences of SEB exposure are known to arise from an exaggerated immune 

response. Upon directly binding the non-polymorphic regions of the major 

histocompatibility complex class II (MHC II) on antigen presenting cells and Vβ8region 

of the T-cell receptor, SEB leads to the activation and clonal expansion of ~30-40% T-

cells (Kozono et al., 1995).  Subsequently, a cytokine storm ensues leading to cellular 

infiltration, tissue damage, multi-organ failure and death(Strandberg et al., ; Uchakina et 

al.).  Although the impact of SEB exposure on key inflammatory signaling pathways 

such 
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as the NFκB, MAPK has been extensively studied (Krakauer), we have only recently 

been made aware of the possible role of microRNA (miRNA) in SEB-mediated 

inflammation.  

microRNA are a unique class of small (18-25 nucleotides), single-stranded non-coding 

RNA molecules that have emerged as primary regulators of gene expression(Dai et al., ; 

Davidson-Moncada et al.). Mammalian miRNA bind primarily to the 3’ UTR of their 

respective target mRNA causing mRNA instability and degradation and/or the disruption 

of translation (Davidson-Moncada et al.). Although miRNAs are involved in the 

development and differentiation of cells, apoptosis and hematopoiesis under normal 

conditions, inflammatory cues leads to their dysregulation, thereby enabling the targeting 

of key regulators of inflammation (O'Connell et al., 2010; Sonkoly et al., 2008). For 

example, in rheumatoid arthritis, the overexpression of miR-146a in CD4+ T-cells 

obtained from the  synovial fluid is associated with increased expression of TNFα (Li et 

al.). Similarly, the inhibition of miR-126 in a house dust mite induced model of asthma, 

leads to the decrease in allergic inflammation (Mattes et al., 2009) . Conversely, while 

high levels of miR-125b are required to maintain a naïve state of T-cells, the activation of 

T-cells leads to its downregulation and subsequent expression of its target gene, Ifng 

(Rossi et al.).  

Recently, our laboratory has demonstrated that intranasal exposure to SEB in C57BL/6 

mice leads to the strong dysregulation of miRNA. miR-155 in particular promotes SEB-

mediated acute inflammatory lung injury(Rao et al.). In the current study, we 

administered SEB as a ‘Dual Hit’ to C3H/HeJ mice which entails administering small 

quantities (5μg and 2 μg) of SEB intranasally and intraperitoneally respectively, two 
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hours apart that results in the hyperactivation of the immune system and 100% mortality 

of mice. Upon investigating the effect of SEB exposure on the miRNA profile, we 

observed the aberrant expression of several miRNA that could potentially contribute to 

SEB-mediated inflammation. Further, applying bioinformatics tools and q-RT PCR, we 

established important links between the miRNA and their respective target genes. Using 

gain -and -loss of function experiments we specifically demonstrate the possible role of 

miR-132 in mediating damage and death. Thus, our results provide further insights into 

the role of SEB-induced miRNA in contributing towards severe acute inflammatory lung 

injury and consequent mortality.  

3.2 MATERIALS AND METHODS 

Mice 

Female C3H/HeJ mice (6-8 weeks) were obtained from the Jackson Laboratory. All mice 

were housed under pathogen free conditions in the Animal Resource facility (ARF), 

University of South Carolina, School of Medicine. All experiments using vertebrate 

animals were performed under protocols approved by the Institutional Animal Care and 

Use Committee (IACUC) at USC.  

Administration of SEB 

SEB was acquired from Toxin Technologies (Sarasota, FL). SEB was administered as a 

‘Dual- Hit’ as described previously (Huzella et al., 2009).  The first dose of SEB was 

delivered by the intranasal (i.n) route at a concentration of 5 μg /mouse in a 25 μl volume. 

Two hours after, the second dose of SEB was administered intraperitoneally (i.p) at a 

concentration of 2 μg/mouse in a 100 μl volume. Control mice were similarly given PBS 
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(vehicle) as a dual dose. While mice were euthanized 72 hours after SEB exposure in all 

experiments, survival of mice was monitored up to 5 days after exposure to SEB and any 

moribund mice were immediately euthanized.  

Lung Histopathology 

72 hours after exposure to either Vehicle or SEB, lungs were excised and fixed in 10% 

formalin. Lung tissue was paraffin embedded and 5μm serial sections were made. 

Subsequently, the sections were deparaffinized by dissolving in xylene, rehydrated in 

alcohol (100%, 95%, and 90%). The sections were stained with hematoxylin and eosin 

(H&E) and assessed with Nikon E600 light microscope. Images were taken at 40X 

magnification.   

Assessment of Vascular Leak 

The percent of Vascular leakage in the lungs was determined as described previously 

(Rieder et al., ; Saeed et al.). Briefly, 72 hours after Vehicle or SEB exposure, mice were 

administered 1% Evans Blue dye in sterile PBS intravenously (i.v). Two hours later, the 

mice were euthanized and lungs perfused with heparinized PBS. The lungs were 

incubated in formamide at 37 ° C for 24 hours to extract the dye. The optical density 

(O.D) of the supernatant was measured by a spectrophotometer at 620 nm. Percent 

increase in Vascular Leak was calculated using the following formula - (O.D sample- O.D 

control/O.D control) x 100.  

Preparation of lung infiltrating cells 

72 hours after exposure to Vehicle or SEB, lungs were perfused with heparinized PBS 

and harvested. They were then homogenized using Stomacher 80 Biomaster blender from 
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Seward (Davie, FL) in 10 ml sterile PBS. Following washing with sterile PBS, the cells 

were separated by density gradient centrifugation at 500 x g for thirty minutes at 24 °C 

with the brake off. Mononuclear cell layer isolated was enumerated by the Trypan blue 

exclusion method using a hemocytometer.  

Detection of Cytokines 

Cytokines in the Broncheoalveolar lavage fluid (BALF) were obtained as described 

previously (Rao et al.).  Briefly, 72 hours after Vehicle or SEB exposure, mice were 

euthanized. The trachea was bound with a suture and the lung was excised as an intact 

unit along with the bound trachea. Sterile ice-cold PBS was injected through the trachea 

to collect the BALF. Cytokine detection was carried out using Bio-Plex Pro ™ mouse 

cytokine 23-plex Assay from Biorad (Hercules, CA).  

In vitro Assays  

Splenocytes from naïve C3H/HeJ mice were harvested and cultured in complete RPMI 

(10% FBS, 10mM L-glutamine, 10mM Hepes, 50 μM β-Mercaptoethanol, and 100 

μg/mL penicillin). Cells were seeded at a density of 1x10
6 

cells in a 96 well plate and 

stimulated with either PBS (Vehicle) or SEB (1 μg/ ml) for 24 hours. The cells were then 

harvested to examine CD4, Vβ8 percentages or activation markers- CD69, CD28, 

CD62L, and CD86. Cellular proliferation was measured by similarly seeding and 

activating splenocytes for 48 hours. In the last twelve hours of incubation, 
3
[H]-

Thymidine (2μCi) was added to the cell culture. Cells were then collected using a 

harvester and thymidine incorporation was measured using a scintillation counter (Perkin 

Elmer).  
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Flow Cytometry and Antibodies 

To determine the phenotypic characteristics of the lung infiltrating mononuclear cells and 

splenocytes obtained from in vitro cell culture assay above, cells were stained with the 

following fluorescent conjugated antibodies -  Fluorescein isothiocyanate (FITC) -

conjugated anti-CD8 (clone: 53-6.7), Phycoerthyrin (PE)-conjugated anti-CD4 (clone: 

GK 1.5), FITC-conjugated anti-CD69 (clone : H1.2F3), PE-Cy5-conjugated anti-CD28 

(clone 37.51), PE-conjugated anti-CD62L (clone MEL-14), PE-conjugated anti-CD86 

(clone Gl-1) from Biolegend (San Diego, CA) and  (FITC-conjugated anti-Vβ8 (clone: 

K516) from Ebioscience (San Diego, CA). Stained cells were run and analyzed using 

Beckman Coulter 500 Flow Cytometer (Indianapolis, IN).  

Total RNA extraction 

Total RNA (including small RNA) was isolated from lung infiltrating mononuclear cells 

using the miRNAeasy kit from Qiagen (Valencia, CA) according to manufacturer’s 

instructions. The purity and concentration of total RNA was confirmed 

spectrophotometrically by Nanodrop 2000c from Thermo Scientific (Wilmington, DE). 

The integrity of miRNA was further confirmed using Agilent 2100 BioAnalyzer (Agilent 

Tech, Palo Alto, CA).  

miRNA expression profiling  

To profile the miRNA expression in the lung after SEB exposure, the Affymetrix 

GeneChip
®

 miRNA 3.0 array platform was used. The array identified 1111 mouse 

miRNA derived from the Sanger miRBase v17 (www.mirbase.org). Total RNA was 

labeled with Flash Tag ™ Biotin HSR labeling kit from Affymetrix (Santa Clara, CA) 

http://www.mirbase.org/
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according to manufacturer’s instructions. Briefly, RNA spike control Oligos were added 

to the RNA and incubated with a Poly A Tailing master mix for 15 min. Next, the RNA 

was labeled with Biotin using FlashTag ™ Biotin HSR Ligation mix. For hybridization 

of the biotin-labeled samples to the array, a GeneChip ® Eukaryotic Hybridization 

Control kit comprising of bioB, bioC, bioD and cre was used to create the array 

hybridization cocktail. Following incubation at 99 °C for 5 min, then 45 °C for 5 min, a 

small volume (100 μl ) was injected into an array. The arrays were further incubated at 

48°C and 60 rpm for 16-18 hours. Post-hybridization, the array was washed and stained 

with fluorescent-conjugated streptavidin using the Fluidics Station 450. The stained chip 

was scanned on a GeneChip Scanner (Affymetrix) to generate the data summarization, 

normalization and quality control files. All microRNA microarray data was deposited 

into ArrayExpress database (www.ebi.ac.uk/arrayexpress/) under the ArrayExpress 

accession number E-MTAB-2641. 

miRNA and mRNA target gene analysis 

The fluorescent intensities obtained from the hybridization were log transformed, mean 

centered and visualized as a heatmap. Hierarchical clustering was carried out using 

Ward’s method and similarity measurement was calculated using half square Euclidean 

distance. miRNA fold change differences between Vehicle and SEB as obtained from the 

microarray was plotted as a fold change distribution plot. Further, only miRNA that 

showed > 2 fold higher or lower values in SEB exposed lung infiltrating cells compared 

to control were considered for analysis. Proportional Venn diagram was created using 

Venn Diagram Plotter (http://omics.pnl.gov/software/venn-diagram-plotter). To further 

assess the biological functions and visualize miRNA interactions with its respective 

http://www.ebi.ac.uk/arrayexpress/
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target genes associated with the miRNA, we employed the use of the commercially 

available tool Ingenuity Systems, Ingenuity Pathway analysis (IPA) (Mountain View, 

CA).  Additionally, to assign immunological functions to miRNA target genes, we used 

Cytoscape 3.0.1, an open source tool equipped with the Gene Ontology applications, 

ClueGO and CluePedia.  

Real Time qPCR 

Total RNA (miRNA and mRNA) obtained from lung infiltrating mononuclear cells or in 

vitro from splenocytes was converted to cDNA using miSript cDNA synthesis kit 

(Qiagen) according to manufacturer’s instructions. To validate and detect miRNA, qPCR 

was carried out using miScript primer assays (miR-132, miR-155, miR-31, miR-222, 

miR-20b, let-7e, miR-192, miR-193*, miR-34a and control Snord96_a) that employs 

SYBR Green technology from Qiagen. Fold change was determined using the 2 
ΔΔCt 

method and expressed relative to control. For mRNA validation, SSO advanced SYBR 

green PCR kit from Biorad (Hercules, CA) was used according to manufacturer’s 

instructions. β-actin was used as the internal control. Primers (Table 3.1) were 

synthesized from Integrated DNA technologies (IDT).  

Transfection with miR-132 mimic and inhibitor 

Splenocytes from naïve C3H/HeJ mice were harvested and cultured in 10 ml of complete 

RPMI. Cells were seeded at 2 X 10
5 

cells per well in 24 well plates and transfected with 

synthetic miR-132 mimic (40 nM) or mock transfected with Transfection reagent 

HiperFect from Qiagen for 24 hours. For miR-132 inhibition, cells were activated with 

SEB (1μg/ml) and transfected with either mock control or miR-132 inhibitor also 
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purchased from Qiagen. 24 hours after transfection, total RNA was collected for qRT 

PCR validation of miR-132 and target gene Foxo3.  

Statistics 

All statistical analyses were carried out using GraphPad Prism Software (San Diego, 

CA).  In all experiments, the number of mice used was 4-5 per group, unless otherwise 

specified.  Results are expressed as means ± SEM. Student’s t-test was used to compare 

two-groups. A p-value of < 0.5 was considered statistically significant. Individual 

experiments were performed in triplicate and each experiment was performed 

independently at least three times to test reproducibility of results. Survival analysis was 

carried out using a Log-rank test. 

3.3 RESULTS 

SEB exposure leads to lung inflammation and acute mortality 

The ‘Dual Hit’ model of SEB administration has been previously known to result in  

severe inflammation in the lungs and death of the mice (Huzella et al., 2009). In this 

study, we found that SEB administration resulted in 100% mortality in mice between 96 

and 120 hours (Figure 3.1A) when compared to mice exposed to vehicle. Pulmonary 

damage was characterized by the disruption of lung integrity, vascular leak and 

consequently edema. To quantitate the extent of damage to the lungs after SEB exposure, 

mice were administered Evans blue dye and vascular leak expressed as a percent increase 

over vehicle as described earlier (Rieder et al., ; Saeed et al.) .  Our results revealed that 

SEB exposure had almost an eight fold increase in vascular permeability compared to 

mice that were only exposed to vehicle (Figure 3.1B). Further, a consequence of SEB 
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exposure is the infiltration of immune cells around air vessels and bronchioles  (Rao et 

al., ; Rieder et al.). Accordingly, histopathological examination of the lungs confirmed 

the presence infiltrating immune cells after SEB exposure compared to vehicle alone 

(Figure 3.1C). Further, upon enumeration of the total number of infiltrating mononuclear 

cells in the lung, we found a profound increase in the number of cells post-SEB exposure 

compared to vehicle (Figure 3.1D). Because SEB exposure leads primarily to the clonal 

expansion of Vβ8+ T-cells, we further assessed the immune subsets (CD4, CD8 and Vβ8) 

by staining with fluorescein-conjugated antibodies and analyzed using flow cytometry. 

As expected, we found significantly increased absolute cell counts in all three subsets 

after SEB exposure (Figure 3.1E).  

SEB, being a superantigen is known to result in the massive release of cytokines. 

Therefore, we obtained the broncheoalveolar lavage fluid (BALF) from mice that were 

exposed to vehicle or SEB and screened for several cytokines and chemokines such as 

IFN-γ, IL-6, IL-12, IL-1α, MCP-1, MIP-1, G-CSF, Eotaxin and KC (Figure 3.2) and 

found that SEB triggered significant levels of these mediators.  

SEB exposure leads to the activation and proliferation of immune cells in vitro 

To determine if SEB exposure can trigger activation of specific immune cell subsets, we 

exposed splenocytes with SEB in vitro for 24 hours and assessed activation by flow 

cytometry. Compared to vehicle, SEB lead to increased proportions of T-cell activation 

markers: Vβ8, CD28, CD69 and CD86 (Figure 3.3A). While we had earlier demonstrated 

that SEB administration leads to increased cell counts in the lung, we investigated if 

activation of splenocytes with SEB, could also lead to increased cellular proliferation. 

Indeed, activation with SEB for 48 hours resulted in significantly higher thymidine 
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counts as compared to vehicle (Figure 3.3B). Cellular proliferation and activation, 

especially of T-cells, is influenced by IL-2 production. Consequently we found 

exaggerated levels of IL-2 in the supernatants of cells activated with SEB. Similarly, 

IFN-γ, a hallmark cytokine associated with SEB exposure was measured and high 

concentrations (~2500 pg) was found upon SEB exposure (Figure 3.3C). These data 

indicate that SEB triggers the activation and proliferation of cells, in vitro in addition to 

in vivo.  

SEB exposure results in the dysregulation of several microRNA  

While miRNA are known to be induced during inflammation and play a critical role in its 

regulation, expression profile of miRNA during SEB-mediated lung inflammation and 

consequent death has not yet been investigated.  Therefore, we extracted total RNA from 

the lung infiltrating mononuclear cells from mice that were either exposed to vehicle or 

SEB and performed miRNA microarray.  The heatmap revealed a noticeable difference in 

fold change between vehicle and SEB-treated groups (Figure 3.4A). To visualize the 

distribution of the miRNA, a radial fold change distribution plot was generated 

demonstrating that while most miRNA remained unchanged and were found around the 

circumference of the plot, a few miRNA were highly upregulated ( up to 56 fold) or 

highly downregulated (up to 22 fold) when compared to vehicle (Figure 3.4B). Amongst 

the miRNA assessed on the array, approximately 4% of the miRNA were either 

overexpressed or underexpressed greater than and equal to two-fold in SEB exposed cells 

compared to vehicle (Figure 3.4C). Next, Ingenuity Pathway analysis (IPA) was 

employed to analyze on this fraction of dysregulated miR, which yielded a list of top 

upregulated (miR-132, miR-155, miR-31, miR-20b, miR-222) and downregulated miRs 
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(miR-192, miR-193*, let -7e, miR-34a), whose fold change values as determined by the 

microarray, seed sequence and miRbase accession numbers were tabulated (Table 2).  

Next, the miRNA expression levels in the lung infiltrating mononuclear cells were 

validated by q-RT PCR. These results corroborated the expression pattern observed with 

the microarray (Figure 3.5).  

Functional analysis of the dysregulated miRNA  

To examine the possible biological functions associated with the over and 

underexpressed validated miRNA, IPA core analysis was conducted and statistically 

significant (Fishers exact test) biological functions were generated and -log [p-value] was 

plotted as a bar graph. We observed that cellular development, cell death and survival, 

cellular growth and proliferation, cell cycle, cell-cell signaling and interaction and gene 

expression were highly enriched functions associated with the SEB-mediated alterations 

in the miRNA (Figure 3.6A). A further dissection of these biological functions revealed 

that a majority of the molecules closely associated with the dysregulated miRs, were 

involved in very specific functions. For example, almost half of the molecules linked 

with cellular development were involved in the differentiation of mononuclear leukocytes 

and T-lymphocytes.  Further, a vast majority (~45%) of the molecules associated with 

cellular growth and proliferation were linked specifically to propagation of T-

lymphocytes.  Similarly, cell-cell signaling and interactions predominantly comprised of 

the specific activation of T-lymphocytes and T-cell responses (Figure 3.6B), 

characteristic features of SEB-induced inflammation.  Thus, our results suggested that the 

miRNA expression profile and its associated biological functions, as indicated in silico, 
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correlated with experimentally observed lung inflammation accompanying SEB 

exposure. 

Predicted mRNA targets of the dysregulated miR after SEB exposure 

Next, we identified possible miR targets by employing IPA. Highly predicted, 

experimentally observed as well as moderately predicted targets of the validated miRNA 

were filtered using the miRNA target filter tool. Only those molecules that were 

associated with the inflammatory process were considered for analysis. Amongst these 

target genes, we found that the upregulated miRNA were predicted or experimentally 

observed to target transcription factors and genes involved in the regulation of 

inflammation. For example, miR-132 and miR-155 targeted B-Cell CLL/Lymphoma 10 

(BCL10), an inducer of apoptosis. Similarly, miR-20b and miR-222 target the suppressor 

of cytokine signaling (Socs) genes, which are negative regulators of several pro-

inflammatory cytokines (Table 3.3). In contrast, the downregulated miRNA such as let 7-

e, miR-34a, miR-192 and miR-193* were predicted to target pro-inflammatory molecules 

such as those involved in cellular proliferation, activation and cytokine production (Table 

3.3). IPA pathway designer tool was also used to visualize the miRNA-mRNA 

interactions (Figure 3.7A) which provided further insight into how the over and 

underexpressed miRNA target key molecules and collectively act to regulate 

inflammation.  Finally, to confirm the immunological functions of the miRNA target 

genes, Gene Ontology (GO) tool, ClueGo, was employed which  yielded a map of highly 

enriched GO terms (Figure 3.7B) such as Lymphocyte activation (GO:0046649) , 

Positive regulation of lymphocyte activation (GO:0051251), Regulation of T-cell 

activation (GO:0050863)  and Positive regulation of immune effector process 

http://amigo.geneontology.org/amigo/term/GO:0051251#display-sentences-tab
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(GO:0002699). Together, these data indicated a strong role for key miRNA, induced by 

SEB, in the regulation of lung inflammation.    

Experimental validation of mRNA target genes.  

To validate and confirm some of the predicted target genes, q-RT PCR was carried out 

using mRNA from lung infiltrating mononuclear cells following exposure to vehicle or 

SEB. Interestingly, upon using microRNA.org (www.microRNA.org) miRNA-mRNA 

alignment tool, we observed that a few of the upregulated miRNA, aligned to the 3’ UTR 

of some of these target genes. For example, miR-155, miR-132, miR-31 bind Smad3, 

while miR-20b and miR-222 aligned to the 3’UTR of Runx1. miR-132, which was highly 

induced following SEB exposure, aligned with the 3’UTR of Foxo3, with the potential to 

target it (Figure 3.8A).  We observed significant downregulation of Smad family member 

3 (Smad3), Transforming Growth Factor, Beta 1 (Tgfβ1), Forkhead box O3 (Foxo3) and 

runt-related transcription factor 1 (Runx1) (Figure 3.8B), molecules that have been 

experimentally shown to regulate cellular proliferation, cell cycle progression and 

cytokine production when induced. Further, the microRNA.org tool suggested that a few 

underexpressed validated miRNA i.e., miR-192, miR-34a and let-7e aligned to the 

3’UTR of these genes (Figure 3.8C) while  several genes associated with the pro-

inflammatory pathway such as  T-box 21(Tbx21), signal transducer and activation of 

transcription 3 (Stat3), prostaglandin-endoperoxidase synthase 2 (Ptgs2), nuclear factor 

kappa (Nfκb) and cell cycle progression genes such as Cyclin D1(Ccnd1) and Cyclin 

E1(Ccne1) were induced upon SEB exposure (Figure 3.8D). Altogether, our results 

indicated that SEB causes alterations in the expression profiles of a significant number of 

miRNA, which in turn may either allow for the expression of pro-inflammatory genes or 

http://www.microrna.org/
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lead to the degradation of anti-inflammatory molecules, thereby collectively contributing 

to severe lung inflammation.     

miR-132 targets Foxo3, an inhibitor of cellular proliferation and cell cycle progression 

miRNA microarray analysis demonstrated that miR-132 was the most highly induced 

after SEB exposure (Table 3.2). Therefore, we rationalized that miR-132 may play a 

prominent role in mediating inflammation and damage in the current model. 

Additionally, amongst the many miR-132 predicted target genes, transcriptional factor 

Foxo3, was especially interesting not only  because of its observed role in inhibiting 

cellular proliferation and curbing cell cycle progression, but due to the fact that miR-132 

aligned to the 3’UTR of Foxo3. To confirm the binding of miR-132 to Foxo3, we 

transfected splenocytes with a miR-132 synthetic mimic. While the levels of miR-132 

were highly increased with the mimic, Foxo3 levels inversely correlated with its 

expression (Figure 3.9A). Similarly, SEB activation of splenocytes led to the expected 

increase in miR-132, but the inhibition of miR-132 resulted in the de-repression of Foxo3 

(Figure 3.9B). These results suggested that miR-132 targets Foxo3, thereby preventing 

the regulation of cellular proliferation seen upon SEB exposure.  

 

3.4 DISCUSSION 

The recent discovery of microRNA (miRNA) has propelled our understanding of gene 

regulation. These non-coding, evolutionarily conserved RNA molecules function 

primarily as repressors of gene expression and are estimated to regulate approximately 

30% of all human genes (Lewis et al., 2005). While the role of miRNA in mammalian 
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cells was first brought to the forefront in cancer (Calin et al., 2002), their importance in a 

number of immune cell activation and functions has since been stressed  (Baltimore et al., 

2008).  With regards to inflammation, several changes in the transcriptional repertoire are 

accompanied with perturbation in miRNA(O'Connell et al., 2010). As a result, it is 

conceivable that miRNA control several aspects of the inflammatory process.  

In the current study, we have profiled the miRNA expression patterns following exposure 

to SEB. Using in silico analysis and q-RT PCR approaches we identified several miRNA 

that were altered in response to SEB. Importantly, these miRNA were found to be closely 

associated with key genes either involved in the control of inflammation or those that 

contributed directly to SEB-mediated inflammatory processes. By showcasing the effects 

of specific over and underexpressed miRNA, we provide evidence that the outcome of 

SEB exposure such as severe lung inflammation and death of mice can be explained, at 

least in part, to the intricate miRNA alterations and miRNA-mRNA interactions.  

Following the unconventional binding of SEB to the major histocompatibility complex 

(MHC) class II on antigen presenting cells (APCs) and subsequent activation of Vβ8 

region of the T-cell receptor, the immune system gets hyperactivated due to the presence 

of large proportions (~30% ) of Vβ+T cells  (Krakauer). As a consequence, such T-cells 

get clonally expanded resulting in a cytokine storm (Rajagopalan et al., 2006).  Although 

several murine models have been developed to study the toxic effects of SEB (Krakauer 

et al.), very few models exhibit mortality in the absence of the use of additional 

potentiating agents such as D-gal or LPS to mimic the consequence of exposure to the 

toxin in humans (Miethke et al., 1992; Savransky et al., 2003). The dual administration 

of SEB while addressing this concern,  has previously been reported to result in severe 
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lung inflammation and the subsequent death of mice (Huzella et al., 2009). In line with 

this previous observation, we found dual exposure to SEB, resulted in extensive 

inflammation of the lung characterized by immune cell infiltration, accumulation of 

cytokine and chemokines in the BALF, compromised lung function and eventually the 

mortality of mice.  

Previously, we studied the effect of a single high dose (50 μg) administration of SEB 

intranasally in C57BL/6 mice and studied lung inflammation (Rao et al.).  In this model, 

although mice exhibit symptoms of acute inflammatory lung injury, there is no mortality 

seen in mice exposed to SEB.   Nonetheless, we demonstrated the predominant role of  

miR-155 in mediating acute inflammatory lung injury in this model (Rao et al.). The 

current “dual-hit” model, because of smaller quantities of SEB, and high mortality, is 

more relevant to SEB exposure in humans.  It is for this reason that we aimed to highlight 

the miRNA profile after acute SEB exposure in this model. While we also observe the 

induction of miR-155 in the current model, we see a similar upregulation of other 

miRNA such as miR-31, miR-20b, miR-222 and miR-132 and the significant 

downregulation of miRNA such as let-7e, miR-34a, miR-192 and miR-193*.  

Interestingly, the expression of these miRNA has been associated with a variety of 

inflammatory conditions suggesting that they may collectively act to orchestrate the 

severe inflammation observed after SEB exposure. For example, miR-31 is 

overexpressed in psoriasis skin and mediates its pro-inflammatory role by targeting 

STK40, a negative regulator of NFκB (Xu et al.). Similarly, miR-155 expression 

correlates positively with that of NFκB activation in Heliobacter pylori infection and in a 

murine model of chronic alcohol consumption and inflammation (Bala et al., ; Xiao et al., 
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2009). Given that SEB exposure is known to activate the NFκB signaling pathway 

(Kissner et al.) and cause the expression of pro-inflammatory cytokines, as indicated by 

our results, it is possible that specific SEB-induced miRNA may function via the 

activation of NFkB.  

Related to the expression of NFkB is the SEB-induced activation of the STAT family of 

proteins, especially STAT3 (Plaza et al., 2004). Activated by cytokines such as IL-6, the 

STAT3 molecule, along with NFκB leads to cellular proliferation, cell survival, cytokine 

production and immune cell activation (Yu et al., 2009), key inflammatory pathways we 

observed experimentally in this study. In addition to finding an increase in Stat3 mRNA 

levels after SEB exposure, we demonstrate that miR-let7e, miR-34a and miR-193* that 

are predicted to target STAT3 are significantly downregulated, thereby facilitating its 

expression.  

Previous reports indicated that the overexpression of miR-34a and miR-193* leads to cell 

cycle arrest and repression of cellular proliferation by the targeting of CCND1 (Chen et 

al., ; Sun et al., 2008). Similarly, while miR-192 is predicted to target CCNE1, let-7e has 

been experimentally validated to directly degrade it in hepatocellular carcinoma cells 

(Zhang et al.). Because these miRNA were specifically downregulated upon SEB 

activation, we observed the unrestrained expression of Ccnd1 and Ccne1 suggesting that 

the significant downregulation of these miRNA may contribute to cell cycle progression 

and cellular proliferation. 

Consistent with previous studies (Busbee et al., ; Green et al., 1992), we have 

demonstrated that SEB exposure predominantly affects T-cells, leading to their activation 

(as indicated by assessment of activation markers) or their recruitment into the lung in 
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large numbers. Interestingly, our in silico analysis of dysregulated miRNA and its target 

genes primarily highlighted a number of T-cell specific functions, such as those that 

promote T-cell activation and proliferation. Of interest, Runx1, a transcriptional factor 

that drives various aspects of T-cell activation and differentiation was highlighted by our 

analysis. Functionally, Runx1 levels remain high in naïve CD4+ T-cells but the activation 

of T-cells turns off its expression (Wong et al.). Moreover, Runx1 deficiency leads to T-

cell proliferation and the induction of IL-2 (Wong et al.). We observed that the SEB-

induced down regulation of Runx1 corresponded inversely with the induction of miR-20b 

and miR-222, miRNA that are specifically predicted to bind the 3’UTR of Runx1, 

suggesting that these miRNA may contribute to SEB-mediated T-cell proliferation and 

activation. 

Comparable to the role of Runx1 in activated CD4+T-cells, the impairment of the 

TGFβ/SMAD3 pathway, also leads to the activation and proliferation of T-cells (Delisle 

et al.). Furthermore, TGFβ mediated cellular apoptosis and cell cycle arrest is known to 

occur through the activation of SMAD3 (Ten Dijke et al., 2002) . Our data demonstrated 

a strong downregulation of Smad3 and Tgfβ mRNA levels. Interestingly, three of the 

most highly overexpressed miRNA i.e. miR-132, miR-155 and miR-31 were predicted to 

align to the 3’UTR of Smad3, strongly suggesting a role of these miRNA in this pathway.  

It is striking that the microarray results revealed a very high expression of miR-132, 

which was validated by q-RT-PCR. Although expressed in high levels in the brain with 

the capacity to influence neuronal differentiation and synaptic plasticity(Lungu et al., ; 

Scott et al.), very few studies have explored its role in inflammation. In primary human 

preadipocytes, the overexpression of miR-132 results in the targeting of SIRT-1, the 
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subsequent activation of NFkB and induction of MCP-1 (Strum et al., 2009). Following 

CD4+ T-cell activation, the overexpression of miR-132 facilitates HIV-1 replication 

(Chiang et al.). Because we witnessed the activation of CD4+ T-cells and the production 

of MCP-1 after SEB exposure, it is reasonable to believe that miR-132 may influence 

these immune processes. Moreover, the in silico analysis of the target genes pertaining to 

inflammation revealed that miR-132 could moderately target Bcl10 and Tgfb2, but was 

highly predicted to target Smad2, Smad5 and the Foxo set of transcriptional factors , 

especially Foxo3. It is known that FOXO3 overexpression leads to apoptosis and that one 

of its primary functions is to regulate unprecedented cellular proliferation (Hedrick et 

al.). Moreover, the absence of FOXO3 leads to hyperactivation of T-cells, autoimmunity 

and lymphoadenopathy (Lin et al., 2004).  Prompted by the importance of FOXO3 in 

controlling inflammation, we pursued the gain- and - loss of function experiments with 

synthetic miRNA mimic and inhibitors and found an inverse relationship between miR-

132 and Foxo3. These data suggested that the targeting of Foxo3 by the highly expressed 

miR-132 could offer an explanation for uninhibited cellular proliferation, the expression 

of cell cycle progression genes and the production of a number of cytokines and 

chemokines in response to SEB.  

In summary, we have effectively profiled several miRNA following exposure to the 

superantigen, SEB. Our data revealed that SEB significantly altered the expression of 

miRNA predicted to have pro-inflammatory roles. With the consequence of SEB 

exposure being extensive lung inflammation and acute mortality of mice it is likely that 

several miRNA are acting in concert to enhance the severity of the disease. Additionally, 

since miRNA have several co-targets, its impact would be expected to be widespread and 
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involve the simultaneous activation and cross talk of a number of inflammatory signaling 

pathways as highlighted in the study. To the best of our knowledge, we are the first to 

report the differential regulation of miRNA in response to SEB in a murine model of 

acute inflammatory lung injury. While it would be interesting to identify a principal 

miRNA, the inhibition of which rescues mice from SEB-induced toxicity our results 

nevertheless point towards the potential therapeutic modulation of miRNA to mitigate 

SEB-induced toxicity.  
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Table 3.1. Real time qPCR primer list 

Gene Primer Sequence 5’→3’ 

Tbx21 Tbx21-F 

 

Tbx21-R 

AAC CGC TTA TAT GTC CAC 

CCA 

CTT GTT GTT GGT GAG CTT 

TAG C 

Tgfb1 Tgfb1-F 

 

Tgfb1-R 

CCA CCT GCA AGA CCA TCG 

AC 

CTG GCG AGC CTT AGT TTG 

GAC 

Foxo3 Foxo3-F 

Foxo3-R 

GCA AGC CGT GTA CTG TGG A 

CGG GAG CGC GAT GTT ATC C 

Stat3 Stat3-F 

 

Stat3-R 

AAT ATA GCC GAT TCC TGC 

AGA G 

TGG CTT CTC AAG ATA CCT 

GCT C 

Nfκb Nfκb --F 

 

Nfκb-R 

ATG GCA GAC GAT GAT CCC 

TAC 

TGT TGA CAG TGG TAT TTC 

TGG TG 

Ccnd1 Ccnd1-F 

 

Ccnd1-R 

GCG TAC CCT GAC ACC AAT 

CTC 

ACT TGA AGT AAG ATA CGG 

AGG GC 

CcnE1 CcnE1-F 

CcnE1-R 

GTG GCT CCG ACC TTT CAG 

TC 

CAC AGT CTT GTC AAT CTT 

GGC A 

Cox2 Cox2-F 

 

Cox2-R 

TGA GCA ACT ATT CCA AAC 

CAG C 

GCA CGT AGT CTT CGA TCA 

CTA TC 

Smad3 Smad3-F 

Smad3-R 

AGG GGC TCC CTC ACG TTA 

TC 

CAT GGC CCG TAA TTC ATG 

GTG 

Runx1 Runx1-F 

 

Runx1-R 

GCA GGC AAC GAT GAA AAC 

TAC T 

GCA ACT TGT GGC GGA TTT 

GTA 

β-actin β-actin -F 

β-actin -R 

GGC TGT ATT CCC CTC CAT 

CG 

CCA GTT GGT AAC AAT GCC 

ATG T 
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Table 3.2.List of select differentially expressed (> 2 fold) miRNA in lung infiltrating 

mononuclear cells after SEB exposure compared to Vehicle control.   

 

 

 

 

 

 

 

 

miRNA Fold change Seed Sequence Accession 

number 

Overexpressed    

mmu-miR-132 56.7 AACAGUC MIMAT0000144 

mmu-miR-155 38.8 UAAUGCU MIMAT0000165 

mmu-miR-31 15.2 GGCAAGA MIMAT0000538 

mmu-miR-20b 5.6 AAAGUGC MIMAT0003187 

mmu-miR-222 3.4 GCUACAU MIMAT0000670 

Underexpressed    

mmu-miR-193* -22.3 GGGUCUU MIMAT0004544 

mmu-miR-192 -10.6 UGACCUA MIMAT0000517 

mmu-let-7e -8.5 GAGGUAG MIMAT0000524 

mmu-miR-34a -6.2 GGCAGUG MIMAT0000542 



www.manaraa.com

57 

 

 

Table 3.3. List of predicted or experimentally observed miRNA target genes associated 

with inflammation.  

 

 

 

 

miRNA Target genes 

miR-132    ↑ Foxo1, Foxo3, Tgfb2, Bcl10, Smad2, 

Smad5 

miR-155    ↑ Bcl10, Foxo3, Socs1, Smad2,  

miR-20b    ↑ Runx1, Mcl1, Pten, Socs6, Socs7, Tgfbr2 

miR-222    ↑ Foxo3, Gata4, Pten, Socs1, Socs3 

miR-31      ↑ Foxp3, Smad3, Rorc 

let7e          ↓ Ccnd1, Ccne1 Cd80, Cd86, Cdkn1a, Il6, 

Il6r, Stat3  

miR-192    ↓ Nfat5, Cxcr5, Traf5, Traf6,Zeb1,Ccne1 

miR-193*  ↓ Ccnd1, Ets1, Esr1, Il12rg, Cd247, Ptgs2  

miR-34a    ↓ Ccnd1,Bcl2, Il6r, Il2rb, Map2k1, Pik3r2  
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Figure 3.1. SEB exposure results in pulmonary inflammation and mortality of mice. 

C3H/HeJ mice were exposed to a ‘Dual Hit’ of SEB and euthanized 72 hours post 

exposure. (A) Survival curve of mice exposed to either vehicle or SEB. (B) Measurement 

of Vascular Leak 24 hours after exposure to the second dose of SEB. Mice were 

administered Evans blue dye and following perfusion, lungs were placed in formamide. 

Absorbance was recorded at 620 nm and the percentage of vascular leak was calculated 

and graphically represented. (C) Representative H&E (x 40) staining of sections of the 

lung demonstrating immune cell infiltration. (D) Total number of mononuclear cells 

infiltrating the lungs in vehicle or SEB exposed mice as determined by trypan blue 

exclusion method. (E) Phenotypic characterization of mononuclear cells infiltrating the 

lung determined by staining cells with fluorescein-conjugated antibodies against CD4, 

CD8 and Vβ8 and conducting flow cytometric analysis. Absolute cell counts are 

represented graphically. Data are means ±SEM (n=5) and are representative of three 

independent experiments. Statistical significance is indicated as follows *p<0.05, ** 

p<0.01, *** P<0.001, **** p<0.0001 (as compared to vehicle).   
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Figure 3.2. Exaggerated expression of chemokines and cytokines after SEB 

exposure. Mice were exposed to either vehicle or SEB for 72 hours and euthanized. The 

trachea was bound with a suture. Following the excision of the lung along with the 

trachea, 1 ml of ice-cold PBS was flushed through the trachea and collected as the 

Broncheoalveolar lavage fluid (BALF). Cytokine and chemokine expression was 

analyzed using a Bioplex and the concentration quantified in pg/ml. Data are means 

±SEM (n=5) and are representative of three independent experiments. Data are means 

±SEM (n=5) and are representative of two independent experiments. Statistical 

significance is indicated as follows *p<0.05, ** p<0.01, *** P<0.001, (as compared to 

vehicle).   
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Figure 3.3. Effect of SEB activation in vitro. Splenocytes seeded at a density of 1X10 
6 

cells were activated with 1 μg/ml of SEB. (A) Twenty four hours after activation, cells 

were harvested and stained with fluorescein-conjugated antibodies against Vβ8 and 

activation markers CD69, CD86 and CD28. The representative histograms are depicted 

(B) Cell proliferation assay as measured by the incorporation of thymidine in splenocytes 

that were activated with SEB for forty-eight hours. (C) Cytokine expression determined 

by ELISA. Samples were obtained from collecting the supernatants following SEB 

activation of splenocytes. For all experiments cells were plated in triplicates and data is 

representative of two independent experiments. Statistical significance is indicated as 

follows ** p<0.01, *** P<0.001, **** p<0.0001 (as compared to vehicle).   
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Figure 3. 4. SEB exposure leads to dysregulation of microRNA.  Seventy-two hours 

after SEB exposure, total RNA was isolated from lung infiltrating mononuclear cells. (A) 

A Heatmap depicting the differential expression of miRNA in the lungs of SEB exposed 

mice compared to vehicle. The accompanying color scape depicts mean expression 

values that are overexpressed (red) or underexpressed (green) above or below the mean 

respectively. (B) Fold change distribution plot of 1111 mouse specific miRNA indicating 

several unchanged, upregulated or downregulated miRNA. (C) A proportional Venn 

diagram showing the number of miRNA that are overexpressed, underexpressed (< 2 

fold) or unchanged after SEB exposure.  
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Figure 3.5. Experimental validation of Top overexpressed and underexpressed 

miRNA. Total RNA was obtained from the lung infiltrating mononuclear cells following 

exposure to either vehicle of SEB. (A) q-RT PCR validation of the IPA generated Top 

overexpressed miRNA. (B) q-RT PCR validation of the IPA generated Top 

underexpressed miRNA. Snord96a was used as the small endogenous control and 

expression of miRNA was normalized to vehicle. Data is represented as mean ± SEM 

from replicate samples. Lung infiltrating mononuclear cells were pooled from 5 mice in 

each group. Statistical significance is indicated as follows *p<0.05, *** P<0.001, **** 

p<0.0001 (as compared to vehicle). 
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Figure 3.6. In silico analysis of SEB-dysregulated miRNA. Ingenuity pathway analysis 

(IPA) was used to analyze the miRNA that were significantly (<2 fold) altered. (A) Bar 

graph highlighting the overall biological functions associated with the dysregulated 

miRNA (B) Horizontal slice plot further depicting the percentage of the miRNA-

associated molecules that can be attributed to specific biological functions.    
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Figure 3.7. In silico analysis of the predicted mRNA targets. (A) IPA generated 

network highlighting the interaction between validated miRNA (yellow) and their 

respective target genes (blue). (B) Cytoscape generated network depicting Gene 

Ontology (GO) enrichment terms and mapped for GO category: Immune response, using 

Cytoscape with ClueGo and CluePedia applications. Two-sided hypergeometric test was 

performed with kappa score threshold setting of 0.4. Benjamini-Hochberg statistical test 

was used. The colored pie chart represents the highly enriched GO terms and the 

diameter of the node in the map is directly proportional to the number of miRNA target 

genes it contains.  
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Figure 3.8. Experimental validation of miRNA target genes. (A) Schematic 

illustration of SEB-induced overexpressed miRNA targeting the 3’UTR of potential 

target genes. (B) q-RT PCR validation of SEB-induced miRNA mRNA targets. (C) 

Schematic illustration of SEB-induced underexpressed miRNA that target the 3’ UTR of 

potential target genes. (D) q-RT PCR validation of SEB-induced miRNA mRNA targets. 

Data is represented as mean ± SEM from replicate samples. Lung infiltrating 

mononuclear cells were pooled from 5 mice in each group. *p<0.05, ** p<0.01, *** 

P<0.001, **** p<0.0001 (as compared to vehicle).   
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Figure 3.9. miR-132 targets Foxo3.  (A) Splenocytes obtained from mice were 

transfected either with miR-132 mimic (Mimic) or Mock transfection control (Mock) for 

24 hours. miR-132 and Foxo3 levels were determined by RT-PCR. (B) Splenocytes were 

activated with (1μg/ml) and for 24 hours. Cells were then transfected with 100nM miR-

132 inhibitor (Inhibitor) or Mock transfection control (Mock) for another 24 hours. 

Foxo3 levels were determined via RT-PCR. For miRNA normalization, Snord96_a was 

used as internal control. For mRNA, β-actin was used as the internal control. Data is 

represented as mean ± SEM from replicate samples statistical significance is indicated as 

*p<0.05,**p<0.01,***P<0.001,****p<0.0001.
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CHAPTER IV: Δ
9
Tetrahydrocannabinol attenuates Staphylococcal enterotoxin B-

induced inflammatory lung injury and prevents mortality in mice by modulation of miR-

17-92 cluster and induction of T-regulatory cells. 

4.1 INTRODUCTION 

Staphylococcal enterotoxin B (SEB) is a potent activator of the immune system resulting 

in the  clonal expansion of 5-30% of the T-cell pool and massive release of cytokines 

(Choi et al., 1989; Faulkner et al., 2005). As a consequence, it is associated with a 

number of diseases ranging from food poisoning, multi-organ failure and lethal toxic-

shock (Alouf et al., 2003; Dinges et al., 2000; Larkin et al., 2009). When inhaled, the 

combination of cellular infiltration and cytokine production, results in vascular leak, 

pulmonary edema, tissue damage and eventually acute inflammatory lung injury (Rao et 

al., ; Rieder et al.).  Due to its ability to be easily aerosolized and for its possible role as a 

biological weapon, SEB is considered a Center for Disease Control and Prevention - 

Category B select agent (Ulrich, 2001). While it is known that the interaction of SEB 

with the T-cell receptor results in the activation of inflammatory pathways such as the 

PI3K, MAPK and NFκB (Krakauer), a recent study from our laboratory has suggested 

that microRNA (miRNA) may play an important role in SEB-mediated inflammation 

(Rao et al.).  
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miRNA are ~22 nucleotide, small, non-coding RNA that target mRNA, leading to its 

degradation and/or translational repression (Guo et al.). Consequently, they control the 

development and differentiation of various immune cells thereby leading to the regulation 

of immune responses (Lindsay, 2008). Upon receiving inflammatory signals , active 

changes occur within the transcriptional repertoire accompanied with altered expression 

of a number of miRNA resulting  in the up or downregulation of several important genes 

(O'Connell et al.). One such modulator of gene expression is the miR-17-92 cluster. 

Originally recognized as an oncogenic miRNA, this cluster that comprises of six miRNA 

(miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1 and miR-92a-1) is known to be an 

important regulator of B and T-cell responses (Olive et al.). For example, miR-17-92 

transgenic mice that express the cluster in both B and T cells develop lymphoproliferative 

disease (Xiao et al., 2008). In addition, miR-19b and miR-17 within the cluster are 

reported to regulate CD4 + T-cells and enhance Th1 responses (Liu et al.), thereby 

demonstrating an important role for the cluster during inflammation.    

Although current therapeutic strategies against SEB include the use of intravenous 

antibodies as well as neutralizing antibodies against SEB-induced cytokines (Larkin et 

al., ; Larkin et al., ; Matthys et al., 1995; Miethke et al., 1992) it’s efficacy remains 

inefficient (Darenberg et al., 2004). Additionally, corticosteroids have been shown to 

attenuate SEB-induced toxic shock and acute lung injury (Huzella et al., 2009; Krakauer 

et al., 2006) , but the immunosuppressive property of corticosteroids is either 

accompanied by a number of side-effects or have remained ineffective clinically (Bernard 

et al., 1987; Meduri et al., 1998; Wajanaponsan et al., 2007) . As a result, there is a need 
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for alternative agents that mitigate SEB-triggered inflammation with the potential to 

modulate SEB-induced inflammatory miRNA. 

Δ
9
-Tetrahydrocannabinol (THC) is a marijuana plant-derived cannabinoid known for its 

robust anti-inflammatory properties (Klein, 2005; Nagarkatti et al., ; Nagarkatti et al., 

2009).  It mediates its action by binding to two main cannabinoid receptors, CB1 and 

CB2, found primarily in the brain and on immune cells respectively (Felder et al., 1998).  

Previously, we have demonstrated that THC induces apoptosis in Jurkat leukemia T-cells 

and dendritic cells (Do et al., 2004).  THC suppresses the production of Th1 cytokines 

IFN-γ and TNF-α (Klein, 2005; Klein et al., 1995; Srivastava et al., 1998; Sun et al., 

2008) , while increasing Th2 cytokines, IL-10 and TGF-β (Sun et al., 2008). 

Additionally, while we have earlier reported that THC induces the production of myeloid 

derived suppressor cells (MDSCs) (Nagarkatti et al.), we have for the first time 

demonstrated that THC-mediated miRNA control the development of these MDSCs 

(Nagarkatti et al.).  Taken together, THC, by virtue of its anti-inflammatory properties 

and its recently discovered ability to regulate miRNA expression could serve as an 

effective therapeutic agent in the attenuation of SEB-mediated lung injury.   

Thus, in the current study, we tested the hypothesis that THC treatment ameliorates SEB-

induced toxicity through regulation of miRNA. Our data demonstrate that THC treatment 

downregulates the members of the miR-17-92 cluster and ameliorates inflammatory 

symptoms associated with SEB-exposure in the lungs.   
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4.2 MATERIALS AND METHODS 

Mice  

Female C3H/HeJ mice (6-8 weeks) were purchased from The Jackson laboratory. All 

mice were housed at the Animal Resource Facility (ARF), University of South Carolina, 

under specific pathogen free conditions. All experiments involving the use of vertebrate 

animals were conducted under protocols approved by the Institutional Animal Care and 

Use Committee (IACUC) at USC. 

SEB administration and THC treatment schedule  

THC was provided by National Institute on Drug Abuse (Bethesda, MD) and SEB was 

procured from Toxin Technologies (Sarasota, Florida). The treatment schedule comprised 

of first injecting Vehicle or THC intraperitoneally (i.p) at a concentration of 20 mg/kg 

body weight in a 100 μl volume dissolved in ethanol (Day 1).  The following day (Day 

2), THC (20 mg/kg) was once again administered via the i.p route. Thirty minutes later, 

SEB was delivered as a ‘Dual Dose’ as described previously (Huzella et al., 2009). 

Briefly, SEB dissolved in sterile PBS (2 mg/mL) was administered first by the intranasal 

(i.n) route at a concentration of 5μg/mouse in a volume of 25 μL. Two hours later, a 

second dose of SEB was delivered i.p at a concentration of 2 μg/mouse in a 100 μl 

volume.  On Day 3, mice were treated i.p. with THC (20 mg/kg). Survival of mice was 

monitored up to 5 days after SEB exposure and any moribund mice were immediately 

euthanized.   
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Assessment of lung damage and function 

Vascular leak in the lungs was determined as described (Rieder et al., ; Rieder et al., ; 

Saeed et al., 2012).  Briefly, mice were injected with 1% Evans blue in sterile PBS 

intravenously (i.v) seventy-two hours after the second dose of SEB. Two hours later, 

mice were euthanized and lungs were perfused with heparinized PBS. Lungs were 

incubated in formamide at 37 ° C for 24 hours to extract the dye. The optical density 

(O.D) of the supernatant was measured spectrophotometrically at 620 nm and percent 

increase in vascular leak was calculated using the following formula - (O.D sample- O.D 

control/O.D control) x 100. Airway resistance was measured using whole body 

plethysmography (Buxco, Troy, NY). Each mouse was restrained in a two-chamber 

plethysmographic tube and were first allowed to acclimatize, followed by exposure to 

saline for 2 minutes. This was followed by a 2 minute exposure to increasing doses of 

methalcholine. The sRaw measurement at each methalcholine dose was calculated and 

plotted as percent airway resistance. To examine lung morphology and histology, lungs 

were fixed in 10% formalin, paraffin embedded and stained with hematoxylin and eosin 

(H&E). The slides were observed under a light microscope at 20 x magnification.  

Cell preparation and Flow cytometry  

Vehicle, SEB+Vehicle and SEB+THC mice (5 mice per group) were euthanized 72 hours 

after dual exposure to SEB. The lungs were perfused with heparinized PBS, harvested 

and homogenized using Stomacher® 80 Biomaster blender from Seward (Davie, FL) in 

10 ml of sterile PBS. Following washing with sterile PBS, cells were layered carefully 

onto Ficoll-Histopaque ®-1077 from Sigma-Aldrich (St Louis, MO) at a 1:1 ratio. 

Mononuclear cells were separated by density gradient centrifugation as a distinct layer as 
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described (Rao et al., ; Rieder et al.) and enumerated by Trypan blue exclusion. To 

determine the phenotypic characteristics of the infiltrating cells, mononuclear cells were 

stained with the following fluorescent conjugated antibodies- Fluorescein isothiocyanate 

(FITC) -conjugated anti-CD8 (clone: 53-6.7), anti-CD3 (clone: 145.2 C11). 

Phycoerthyrin (PE)-conjugated anti-CD4 (clone: GK 1.5), anti NK1.1 (clone: PK136) 

from Biolegend (San Diego, CA). FITC-conjugated anti-Vβ8 (clone: K516) from 

Ebioscience (San Diego, CA). Intracellular staining of Foxp3 was carried out using 

Biolegend’s Foxp3 Fix/Perm buffer set following manufacturer’s instructions and using 

anti-foxp3 alexa flour 488 (clone MF-14) from Biolegend.  

Cytokine Analysis  

To assess serum cytokines, mice were bled three hours after dual exposure to SEB. 

Cytokines from the BALF were obtained at the time by binding the trachea with a suture 

and excising the lung along with the trachea, as described (Rao et al., ; Rieder et al.). 

Sterile, ice-cold PBS was injected through the trachea to aspirate the fluid. The samples 

were centrifuged to obtain the supernatants. All cytokine levels were measured using 

Biolegend (San Diego, CA) ELISA MAX ™ standard kits.  

miRNA target predictions and transfections  

miRNA target candidate Pten was predicted using Ingenuity Pathway Analysis (IPA) 

software from Ingenuity Systems ® (Mountain View CA). Briefly, highly predicted and 

experimentally observed targets of the individual miRNA in the miR-17-92 cluster were 

selected. A core analysis was carried out and significant (fishers exact test) biological 

functions associated with the data set was generated. Additionally, a bar graph 

highlighting key canonical pathways associated with the dataset was also generated. 
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miRSVR score and alignment of miR-18a with Pten was obtained from 

www.microRNA.org , target prediction website. To validate Pten as a target of miR-18a, 

splenocytes from naïve C3H/HeJ mice were harvested and cultured in complete (10% 

FBS, 10mM L-glutamine, 10mM Hepes, 50 μM  β-Mercaptoethanol , and 100 μg/mL 

penicillin)  RPMI 1640 medium (Gibco Laboratories, Grand Island, NY). Cells were 

seeded at 2 x 10
5
 cells per well in a 24 well plate and transfected for 24 hours with 40nM 

synthetic mmu-miR-18a (MSY0000528) or mock transfected with HiperFect transfection 

reagent  from Qiagen (Valencia, CA). For inhibition of miR-18a, SEB-activated cells 

were similarly transfected for 24 hours with 100 nM synthetic mmu-miR-18a 

(MIN0000528) or mock transfected.   

Total RNA extraction and q-RT PCR  

Total RNA (including small RNA) was isolated from lung-infiltrating mononuclear cells 

or in vitro from splenocytes using miRNeasy kit from Qiagen (Valencia, CA) following 

manufacturers instruction. The purity and concentration of the RNA was confirmed 

spectrophotometrically using Nanodrop 2000c from Thermo Scientific (Wilmington, 

DE).  For miRNA validation and quantification, we used SYBR Green PCR kit (Qiagen) 

and for mRNA validation, SSO Advanced ™ SYBR green PCR kit from Biorad 

(Hercules, CA). Fold change of miRNA was determined by normalization to Snord96_a 

internal control, whereas, mRNA levels were normalized to β-actin.  The following q-RT 

PCR primers were used: β-actin (F) 5’GGCTGTATTCCCCTCCAT G-3’ and (R) 5’-

CCAGTT GGTAACAATGCCATGT-3’; Foxp3 (F) 5’ AGCAGTCCACTTCACCAAGG 

3’ and (R) 5’ GGATAACGCCAGAGGAGCTG 3’; Pten (F) 5’ 

file:///C:/Users/raor/Desktop/Manuscript%202%20-miR-17-92/www.microRNA.org
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TGGATTCGACTTAGACTTGACCT 3’ and (R) 5’ GCGGTGTCATAATGTCTCTCAG 

3’.  

In vitro cell culture assays 

Splenocytes from naïve C3H/HeJ mice were harvested and cultured in complete RPMI. 

Cells were seeded at 1x10
6
 cells per well of a 96 well plate and either left unstimulated or 

stimulated with SEB (1μg/ml). Cell were either treated with THC (20μM) or with AKT 

1/2 kinase inhibitor (A6730) from Sigma-Aldrich at the doses indicated. Twenty-four 

hours later cells were harvested and centrifuged. The cell supernatants were collected for 

assessment of IFN-γ levels by ELISA and the cell pellets were used for total RNA 

extraction and q-RT PCR. Cell proliferation was determined by incubating the cells as 

described above for forty-eight hours. 
3
[H]-Thymidine (2μCi) was added to the cell 

cultures in the last 12 hours of incubation. Cultures were collected using a cell harvester 

and thymidine incorporation was measured using a scintillation counter (Perkin Elmer). 

Statistical analysis  

All statistical analyses were carried out using GraphPad Prism Software (San Diego, 

CA).  In all experiments, the number of mice used was 4-5 per group, unless otherwise 

specified.  Results are expressed as means ± SEM. Student’s t-test was used to compare 

two-groups, whereas multiple comparisons were made using one-way analysis of 

variance (ANOVA), followed by post hoc analysis using Tukey’s method.  A P-value of 

< 0.5 was considered statistically significant. Individual experiments were performed in 

triplicate and each experiment was performed independently at least three times to test 

reproducibility of results. Survival analysis was carried out using a Log-rank test.  



www.manaraa.com

75 

 

4.3 RESULTS 

THC strongly attenuates SEB-mediated inflammation and prevents acute mortality  

Dual SEB exposure has been previously used to study acute lung injury  leading to 100% 

death in C3H/HeJ mice (Huzella et al., 2009).  In the current study, we found that 100% 

of the mice exposed to SEB died between 96 and 120 hours. Remarkably, in THC treated 

groups, all mice survived (Figure 4.1A). SEB exposed mice displayed signs of lethargy, 

hunching, ruffled fur and respiratory stress; whereas THC treated mice appeared 

healthier. To gauge the extent of pulmonary damage , we measured airway resistance 

using whole body plethysmography and found that SEB exposure resulted in a significant 

percent increase in airway resistance, while THC treated mice recorded specific airway 

resistance (sRAW) values similar to Vehicle alone (Figure 4.1B). Further, we measured 

the percent increase in vascular leak by administration of Evans blue dye. Evans blue 

binds to serum albumin and is a measure of vascular permeability, as shown previously 

(Rieder et al.). Our results demonstrated that while SEB exposure had a profound 

increase in vascular leak when compared to Vehicle only, THC treatment caused a 

significant decrease in vascular leak (Figure 4.1C). Acute inflammatory lung injury is 

characterized by massive immune cell infiltration into the lung. Accordingly, we found 

an increase in the total number of mononuclear cells after SEB exposure and a 

subsequent decrease with THC treatment (Figure 4.1D). This was confirmed by 

histopathological examination of the lungs whereby SEB exposed mice displayed an 

increase in infiltrating immune cells around the bronchioles and air vessels while the 

THC treated mice, yielded significantly fewer layers (Figure 4.1E). To identify the 

immune subsets amongst the infiltrating mononuclear cells, we stained the cells with 
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various fluorescein-conjugated anti-mouse antibodies. We found that exposure to SEB 

resulted in increased CD3+ (T-cells), CD4+ (T-helper cells), CD8+ (Cytotoxic T-cells), 

Vβ8+ NK+ (Natural Killer cells) and NK1.1+CD3+ (Natural killer T-cells), THC 

treatment caused an overall decrease in the absolute cell numbers (Fig 4.1F).  

A hallmark of SEB-mediated inflammation is the abundant release of cytokines. To 

determine if THC was able to blunt cytokine secretion, we first analyzed the 

concentration of early cytokines IL-2 and MCP-1 in the serum. Mice were bled at 3 

hours, 6 hours, and 24 hours after SEB exposure.  While IL-2 and MCP-1 peaked at 3 

hours (data not shown), we found that the THC treated group showed diminished 

secretion of both IL-2 and MCP-1 as early as 3 hours after SEB exposure (Figure 4.2A), 

supporting the potent anti-inflammatory role of THC in this model. Moreover, an 

examination of cytokines in the broncheoalveolar lavage fluid (BALF) revealed that THC 

treatment led to the substantial decrease in IFN-γ, IL-6, IL-12 and IL-10 (Figure 4.2B). 

Overall, these data suggest that THC attenuates SEB-induced immune cell infiltration, 

decreases early and late cytokine secretion, and prevents mortality of the mice.  

THC modulates the expression of the miR-17-92 cluster  

Antigenic stimulation and the activation of the T-cell receptor  is known to result in the 

induction of miR-17-92 cluster (Wu et al., 2012). Consequently, we reasoned that SEB 

exposure would lead to the expression of this prominent miRNA cluster.  Seventy two 

hours after exposure to SEB, we measured miRNA expression in mononuclear cells 

isolated from the lung by q-RT PCR. Interestingly, we observed high levels (up to 600 

fold) of the miRNA cluster, although individual miRNA were induced to different levels. 

More interestingly, THC treatment was able to down-regulate the individual members of 
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the cluster significantly (Figure 4.3), strongly suggesting that THC may exhibit its 

powerful anti-inflammatory activity through the modulation of inflammatory miRNA.  

miR-17-92 cluster is linked to the activation of the PI3K/AKT/ pathway 

Because SEB exposure resulted in the strong induction of the miR-17-92 cluster, we 

sought to explore the significance of this particular cluster in our study. Therefore, we 

carried out computational analysis on the highly predicted and experimentally observed 

targets of the cluster (miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92a-1) 

using Ingenuity Pathway analysis (IPA). IPA results suggested that the members of the 

cluster were involved in a number of biological functions relevant to the expansion of T-

helper lymphocytes, the development of regulatory T-cells, the proliferation of cells and 

apoptotic processes (Figure 4.4A). In addition, analysis of the canonical pathways 

associated with the cluster indicated the involvement of the MAPK, NFκB, and 

PI3K/AKT signaling pathways, (processes that are all reported to be SEB-triggered).  

Interestingly, while the PTEN signaling and mTOR pathways were highlighted by IPA as 

significant (Figure 4.4B), pathway analysis also indicated that the miRNA in the cluster 

are highly predicted or experimentally observed to converge on Pten (Figure 4.4C). As a 

result, we reasoned that the SEB-induced miRNA cluster is involved in the activation of 

the PI3K/AKT signaling pathway while THC mediated down-regulation of this cluster 

inhibits the aforementioned activation. To test if the cluster was indeed involved in the 

activation of the PI3K/AKT pathway, we activated splenocytes with SEB and treated 

them with an AKT1/2 inhibitor. Amongst the individual members of the cluster that were 

upregulated by SEB activation (data not shown), miR-18a in particular was significantly 
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downregulated upon AKT1/2 inhibition (Figure 4.5A).  This indicated the involvement of 

miR-18a in SEB-mediated activation of the PI3K/AKT pathway. 

miR-18a targets Pten, a negative regulator of the PI3K/AKT Pathway 

Previous reports have established that a principal target of the miR-17-92 cluster is PTEN 

(phosphatase and tensin homologue), an antagonist of the PI3K/AKT pathway (Liu et al., 

; Xiao et al., 2008) . Using www.miRNA.org alignment tool, we found that miR18a is 

predicted to target the 3’ UTR of Pten with a good miRSVR score of -0.1453 (Figure 

4.5B). To assess if miR-18a indeed targets Pten, we first transfected splenocytes with 

synthetic miR-18a mimic. Interestingly, we found that miR-18a mimic repressed Pten 

(Figure 4.5C). Further, the inhibition of SEB-activated cells with a miR-18a synthetic 

inhibitor led to the derepression of Pten (Figure 4.5D), suggesting that miR-18a, 

belonging to the cluster, plays a prominent role in the repression of Pten and 

consequently results in the activation of SEB-triggered PI3K/AKT pathway. Earlier we 

observed that THC was able to dramatically decrease the expression of the miRNA 

cluster (Figure 4.3). Therefore, we wondered if THC treatment would be able to 

subsequently restore the SEB-induced suppression of Pten. Upon assessing Pten 

expression in lung infiltrating mononuclear cells by q-RT PCR, we observed that while 

SEB exposure indeed resulted in the repression of Pten, THC treatment led to its increase 

(Figure 4.5E).  Taken together, these data indicated that THC, via down-regulation of 

miR-18a, leads to the release of Pten and in doing so, may act as an AKT inhibitor.  

THC functions as an AKT inhibitor 

The activation of the PI3K/AKT pathway leads to cellular proliferation, the release of 

IFN-γ and inhibition of T-regulatory cells. Our results suggested that by antagonizing the 
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PI3K/AKT axis via the down-regulation of miR-18a and the subsequent release of Pten, 

THC may mimic the properties of an AKT inhibitor. To confirm this notion, we first 

compared the properties of THC with an AKT inhibitor on IFN-γ production in vitro. 

Splenocytes were activated with SEB and treated with THC or AKT inhibitor. The 

resulting concentration of IFN-γ was measured by ELISA. As expected, AKT inhibition 

led to the dose dependent decrease of IFN-γ (Figure 4.6A). Interestingly, THC treatment 

also demonstrated a trend in the dose-dependent decrease of IFN-γ, with a significant 

blunting of this cytokine at the highest dose (Figure 4.6A). Further, when cellular 

proliferation of cells was assayed by thymidine incorporation, we observed a similar 

dose-dependent decrease in cellular proliferation (Figure 4.6B) with THC and the AKT 

inhibitor. Moreover,  the interruption of AKT signaling results in the induction of 

CD4+Foxp3+ T-regulatory cells (Merkenschlager et al., ; Sauer et al., 2008). Upon 

activating splenocytes with SEB in vitro and treating with either the AKT inhibitor or 

THC, we found significant induction of foxp3 (Figure 4.6C) compared to SEB alone. The 

induction was further confirmed by flow cytometric analysis and q-RT PCR of lung 

infiltrating mononuclear cells (Figure 4.6D). Taken together, these data indicate that THC 

inhibits AKT signaling by modulating miR-18a and allowing for the release of Pten. The 

resulting decrease in cellular proliferation, IFN-γ production and induction T-regulatory 

cells, prevent SEB-mediated acute inflammatory lung injury and death.   
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4.4 DISCUSSION 

In the current study, we investigated the role of THC in preventing SEB-induced 

inflammatory lung injury and subsequent mortality via the modulation of miRNA. 

Through the use of q-RT PCR and computational tools, we found that the SEB-induced 

miRNA 17-92 cluster which was overexpressed in the lungs is down-regulated with THC 

treatment. Specifically, by performing gain-and loss-of function analysis using synthetic 

mimic and inhibitor, we confirmed the predominant role of miR-18a in the SEB-mediated 

activation of the PI3K/AKT pathway. Our studies also suggested that THC may function 

as an antagonist of the AKT pathway, at least in part, by its ability to significantly 

decrease the expression of miR-18a. Our results highlight the role of miRNA in 

facilitating severe inflammation and the ability of cannabinoids to suppress its 

expression. Importantly, we show that the previously reported potent anti-inflammatory 

role of THC can be explained, at least in part, by its ability to act upon SEB-mediated 

miRNA.  

SEB specifically expands a large number of T cells, by virtue of engaging the Vβ8  

region of the T-cell receptor (TCR) following binding to the MHC II on antigen 

presenting cells (APCs) (Choi et al., 1989; Hurley et al., 1995). Consequently, SEB 

exposure leads to the massive release of inflammatory cytokines, proliferation of T cells, 

tissue damage and SEB-mediated shock (DeVries et al., 2011; Kissner et al., 2011; 

Miethke et al., 1992).  Most models developed to study the effects of SEB exposure in 

mice, have employed the use of transgenic mice or external agents such as LPS or D-

galactosamine to potentiate SEB-mediated inflammatory response (DaSilva et al., 2002; 

Savransky et al., 2003). In the dual administration of SEB as used in this study, 
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microgram quantities of SEB were sufficient to cause inflammatory symptoms and 

toxicity reminiscent of SEB exposure in humans (Huzella et al., 2009). In this model, 

mice succumb to SEB-mediated shock and severe respiratory damage (Huzella et al., 

2009). Consistent with these reports, we observed an overall increase in mononuclear 

cells in the lung, particularly T cells. We also found SEB-mediated release of early 

monocyte and T-cell recruiting cytokines IL-2 and MCP-1 in the serum. Additionally, we 

noted the abundant release of late cytokines, especially IFN-γ in the BALF of the lungs 

resulting in compromised vascular permeability and the ultimate death of mice.  

Earlier studies have reported that the molecular mechanism of action behind SEB-

mediated inflammation and toxicity begins soon after the activation of the TCR 

(Goldbach-Mansky et al., 1992; Linsley et al., 1993). Following the increase in co-

stimulatory molecules, a number of signaling pathways such as the MAPK, ERK, JNK, 

and PI3K/AKT are simultaneously activated (Krakauer). These pathways culminate in 

the stimulation of various transcription factors such as NFκB and NFAT (Trede et al., 

1995; Tsytsykova et al., 2000). However, with the recent discovery of miRNA, our 

understanding of the molecular mechanisms that govern gene regulation has been 

revolutionized. It is now evident that these small single- stranded RNA molecules are 

capable of targeting the 3’ UTR of mRNA thereby regulating biological processes such 

as cellular proliferation, differentiation and development(Davidson-Moncada et al.). 

miRNA are also induced upon a number of inflammatory cues and subsequently 

influence immune responses and immune cell development (Dai et al.). 

The miR-17-92 cluster found on mouse chromosome 14 is amongst the many miRNA 

that are found to be overexpressed under inflammatory conditions (Sonkoly et al., 
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2009a). It is transcribed as a single polycistronic unit and comprises of six miRNA- miR-

17, miR-18a, miR-19a, miR-19b-1, miR-20a, and miR-92-1(Wu et al.). Previously, it has 

been shown that naïve CD4+ T-cells polarized under Th1 inducing conditions show a 

significant increase in the miR-17-92 cluster. (Sasaki et al., 2010) Further, a recent report 

demonstrated the critical role of the cluster in the expansion of T-cells upon antigenic-

stimulation, although they observed that  individual miRNA within the cluster have 

differential roles in promoting Th1 responses.(Liu et al.)  Prompted by these reports, we 

first investigated the role of miRNA in facilitating SEB-mediated lethality in mice and 

found that SEB exposure led to the overexpression of the miR-17-92 cluster in lung 

infiltrating mononuclear cells. Similar to previous studies, we also found that the 

members of the cluster, were expressed to different levels, suggesting that one or more 

miRNA within the cluster may play a more prominent role.  

It was reported that  the overexpression of miR-17-92 cluster causes lymphoproliferation, 

autoimmunity and premature death of mice by targeting Pten, a well-established 

antagonist of the PI3K/AKT pathway (Xiao et al., 2008). In the present study, we 

demonstrate that Pten is suppressed after SEB exposure. Whereas previous studies have 

shown a primary role for miR-19b in the targeting of Pten (Liu et al., ; Olive et al., 

2009), we attribute the SEB-mediated suppression of Pten to the predominant role of 

miR-18a. These data are surprising because while we demonstrate a clear reversal in the 

suppression of Pten using a miR-18a inhibitor, a few reports have demonstrated its role in 

inhibiting cellular proliferation(Liu et al., ; Tsang et al., 2009).  It is possible that the 

functional targets of miRNA may differ based on the type of antigenic stimulation. 

Alternatively, the critical timing of SEB dual administration could contribute to the 
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specific regulation of Pten by miR-18a. Moreover, it is also possible that because the 

cluster comprises of six miRNA with several predicted target genes, Pten is simply one 

of many genes simultaneously targeted during the course of inflammation. Nevertheless, 

our results show a clear induction of the miR-17-92 cluster and specifically the 

suppression of Pten by miR-18a.  

The anti-inflammatory and immunosuppressive effects of THC are diverse and function 

effectively to abrogate a number of inflammatory processes.  For example,  THC has 

previously been reported to prevent the development of a murine model of multiple 

sclerosis and colitis (Jamontt et al., 2010; Lyman et al., 1989). In a mouse model of Con-

A induced hepatitis, we have demonstrated its ability to act on acute inflammation, where 

it not only decreased the production of inflammatory cytokines, but also reduced cellular 

proliferation(Hegde et al., 2008). Consistent with these reports, our data demonstrate a 

significant reduction in infiltrating immune cells in the lung, blunting of cytokines as 

early as 3 hours after SEB exposure and more astonishingly, the 100% survival of mice. 

We have previously demonstrated that THC’s anti-inflammatory properties can be 

credited, in part, to the induction of immunosuppressive cells such as regulatory T-cells 

(T-regs) and myeloid derived suppressor cells (MDSC) (Hegde et al., 2008; Nagarkatti et 

al.). Recently,  we have identified a novel role for THC in modulating miRNA involved 

in the development of MDSCs (Nagarkatti et al.), a finding that could shed mechanistic 

light on  THC’s mode of action . Thus, we rationalized that THC could potentially exert 

its strong anti-inflammatory activities by modulating SEB-induced miRNA. Our present 

findings validate our hypothesis and we observed a potent down-regulation of the miR-

17-92 cluster. Inversely, our results demonstrate the derepression of Pten suggesting that 
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THC, via the down regulation of the cluster might be an inhibitor of the PI3K/AKT 

pathway. Interestingly, earlier studies in cancer models have demonstrated that THC 

disrupts the PI3K/AKT signaling pathway (Greenhough et al., 2007; Leelawat et al., 

2010). However, in light of our current observation that it modulates key miRNA, its 

anti-inflammatory properties via its role as a PI3K/AKT inhibitor, is made more evident.    

The disruption of the PI3K/AKT/mTOR axis using AKT inhibitors has been previously 

reported to decrease cellular proliferation, induce apoptosis and decrease IFN-γ 

production (Mandal et al., 2005; Shin et al., 2002). Further, Rapamycin, an inhibitor of 

mTORC1, specifically diminishes SEB-induced IL-2 ,IFN-γ and T-cell proliferation 

(Krakauer et al., ; Krakauer et al.). In line with these reports, our results also 

demonstrated decreased cellular proliferation and IFN-γ production with THC treatment. 

Additionally, the PI3K/AKT activation of PTEN deficient T-cells, led to the suppression 

of CD4+Foxp3+ T-cells, which was reversed with PI3K/AKT inhibition (Sauer et al., 

2008). Similarly, we observed the induction of T-regulatory cells in the lung upon THC 

treatment, further confirming that THC is an inhibitor of the PI3K/AKT signaling 

pathway, and that part of its mechanism involves down-regulation of the miR-17-92 

cluster, particularly miR-18a. 

Taken together, our data demonstrate that THC is a strong anti-inflammatory agent 

capable of rescuing mice from SEB-mediated toxicity and death. By affecting the SEB-

induced miR-17-92 cluster, it restores Pten, and enables the proper regulation of the 

PI3K/AKT signaling pathway. Consequently, it reduces cellular proliferation, diminishes 

the production of pro-inflammatory cytokine and induces T-regulatory cells (Figure 4.7). 
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Figure 4.1. THC prevents mortality and alleviates SEB-induced inflammation in the 

lung (A) Survival curve of mice receiving SEB+ Vehicle when compared to mice treated 

with SEB+THC. (B) Measurement of airway hyperreactivity [sRAW] using whole body 

plethysmography. Mice were acclimatized in a two-chamber plethysmograph tube and 
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were first exposed to aerosolized saline followed by increasing doses of methalcholine. 

Data was recorded for 4 minutes and the sRAW value was calculated over saline. (C) 

Assessment of vascular leak in the lungs was carried out 72 hours after SEB exposure. 

Mice were injected with 1% Evans blue i.v. Two hours later, the lungs were perfused and 

placed in formamide at 37 °C for 48 hours. Percent vascular leak was calculated by 

measuring absorbance at 620 nm. (D) Total number of infiltrating mononuclear cells 

were determined 72 hours after SEB exposure. Lungs were mechanically macerated and 

the suspension was placed on a Ficoll gradient. Mononuclear cells thus obtained, were 

counted by trypan blue exclusion method and enumerated. (E) Histopathological 

examination of lungs as determined by Hemotoxylin and Eosin staining. Arrows indicate 

infiltrating immune cells around a capillary. Total layers of infiltrating cells were counted 

around 10 different capillaries and enumerated in the bar graph. (F) Flow cytometric 

analysis to identify immune subsets was carried out. Mononuclear cells were stained with 

antibodies against T-cells (CD3), T-helper cells (CD4), cytotoxic T-cells (CD8), Vβ8-

region of the T-cell receptor (Vβ8), natural killer cells (NK) and natural killer T-cells 

(NKT). Absolute cell numbers of various subpopulations was calculated using the 

formula:  Total number of cells isolated from the lungs x percent of specific cells/100, 

and plotted as a bar graph. Bar graphs summarize the means ±SEM from 3-5 independent 

experiments.  
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Figure 4.2: THC decreases SEB-induced cytokine secretion (A) Measurement of early 

cytokines, IL-2 and MCP-1 in serum 3 hours after SEB exposure. (B) Cytokine 

measurement of IFN-γ, IL-12, IL-10 and IL-6 in the broncheoalveloar lavage fluid 

(BALF). All cytokines concentrations were determined using Enzyme linked 

immunosorbent assay (ELISA). Bar graphs summarize the means ±SEM from 3-5 

independent experiments. For cytokines from the serum, unpaired, two-tailed t-test was 

used to determine significance from SEB.  
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Figure 4.3: THC significantly down-regulates SEB-induced expression of the miR-

17-92 cluster. Real time (RT) PCR validation of the individual miRNA (miR-17, miR-

18a, miR-19a, miR-19b-1, miR20a and miR-92a-1) of the miR-17-92 cluster obtained 

from lung infiltrating mononuclear cells. Data are normalized to internal control 

Snord_96a. Statistical significance was assessed using ANOVA, tukey’s multiple 

comparison test. 
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Figure 4.4: The involvement of the miR-17-92 cluster in key biological pathways (A) 

Graphical representation of the biological functions associated with significantly 

upregulated SEB-induced miRNA as determined by Ingenuity ® pathway analysis (IPA) 

(B) Canonical pathways associated with miRNA target genes. IPA was used to filter 

highly predicted and experimentally observed targets of only the significantly 

upregulated miRNA in response to SEB. A graphical representation of the significant 

(fisher’s exact test) pathways of these particular target genes was generated. (C) IPA 

pathway demonstrating the convergence of the members of the miR-17-92 cluster on 

Pten.  
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Figure 4.5: miR-18a targets Pten, an inhibitor of the PI3K/AKT pathway. (A) RT-

PCR of miR-18a levels in splenocytes that were activated with SEB and treated with 

AKT inhibitor. miRNA levels measured relative to Snord_96a internal control (B) Target 

prediction of miR-18a using miRanda (www.microrna.org), showing the alignment of the 

mature miRNA to the 3’ UTR of Pten mRNA.  The miRSVR score represents the 

probability of mRNA target down-regulation and the cut-off for a good score was set at ≤ 

-0.01. (C) RT-PCR quantification of miR-18a and its target Pten. Splenocytes were 

transfected with 40 nm of miR-18a mimic for 24 hours. (D) RT-PCR quantification of 

miR-18a and Pten after transfection with a synthetic miR-18a inhibitor. Splenocytes that 

were activated with SEB (1μg/ml) were also transfected with miR-18a inhibitor for 24 

hours. (E) Real-time PCR quantification of Pten levels in lung infiltrating mononuclear 

cells.  All miRNA levels were measured relative to internal control Snord_96a and 

mRNA levels were normalized to β-actin. Statistical significance was assessed using 

ANOVA, tukey’s multiple comparison test. 
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Figure 4.6 : THC is an inhibitor of the AKT pathway and leads to the induction of 

CD4+Foxp3+ T-regulatory cells (A) IFN-γ levels in supernatants of splenocytes that 

were activated with SEB  and treated with varying doses of THC or AKT inhibitor. (B) 

Thymidine incorporation to measure proliferation of splenocytes activated with SEB or 

treated with the indicated doses of THC or AKT inhibitor. (C) RT-PCR of Foxp3 levels 

in splenocytes that were treated either with THC or AKT. mRNA levels measured 

relative to β-actin. (D) Flow cytometric analysis of CD4+Foxp3+ T-regulatory cells in 

lung infiltrating mononuclear cells for the groups indicated. The bar graph represents the 

RT-PCR expression of Foxp3 in lung infiltrating mononuclear cells. In all in vitro 

experiments, Splenocytes were activated with 1μg/ml SEB. Statistical significance was 

assessed using ANOVA, tukey’s multiple comparison test.     
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Figure 4.7: Schematic of the proposed working model. SEB administration leads to the 

activation of the PI3K/AKT pathway via the induction of the miR-17-92 cluster and the 

subsequent down-regulation of Pten. As a result, SEB exposure leads to increased 

cellular proliferation, cytokine production, pulmonary damage and the acute mortality. 

The down regulation of the cluster by THC restores Pten levels and allows for the 

inhibition of the PI3K/AKT axis. This leads to attenuation of acute inflammatory lung 

injury and induction of T-regulatory cells, which together prevent SEB-induced 

mortality.   
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CHAPTER V: SUMMARY AND CONCLUSION 

 

It is evident that the scientific community is making great strides in the study of miRNA. 

In nearly a decade, these novel regulators of gene expression have been recognized for 

their ability to control almost every biological process. In naïve conditions, they exist to 

maintain homeostasis, influence cellular development and commitment to specific 

lineages. In stress and inflammation, their impact is made even more apparent, as their 

massive dysregulation contributes significantly to worsening of disease. miRNA biology 

is made complex given that a single miRNA can have hundreds of  target genes and that 

inflammatory conditions lead to the alteration of a number of miRNA. Thus, it is 

imperative that we first present an overview of the importance of the miRNA signaling 

pathways and then begin to dissect the involvement of individual miRNA. In doing so, 

we can identify unique miRNA biomarkers and aim to develop therapeutic agents that 

directly or indirectly target miRNA.  

 

In the studies undertaken here, we have explored the impact of SEB exposure in mouse 

models of acute inflammatory lung injury. Although, previous studies have demonstrated 

that SEB, a superantigen causes an exaggerated immune response and subsequent 

damage, the molecular mechanism behind its actions were attributed to inflammatory 

signaling pathways downstream of TCR activation. We hypothesized that if 

inflammatory cues are known to induce miRNA, then SEB-induced antigenic stimulation 
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should also lead to expression of miRNA. Indeed, our studies in two mouse models of 

SEB-induced lung injury confirmed the dysregulation of miRNA. In silico analysis 

revealed that these miRNA perform biological functions pertaining to cellular 

proliferation, T-cell activation, and cytokine production. The interaction between miRNA 

and their respective target genes was further found to involve the activation of key 

inflammatory signaling pathways known to be associated with SEB activation 

experimentally. Additionally, we focused on the role of highly overexpressed miRNA to 

determine its involvement to SEB-mediated damage. In the less severe form of acute 

inflammation, we found that miR-155 and its respective target gene Socs1 could explain 

the copious amounts of IFN-γ produced and the subsequent damage inflicted to the lung. 

In the model that resulted in the death of mice, we observed that a miRNA cluster (miR-

17-92) commonly studied in cancer, was activated following SEB exposure. 

Identification of the role of this cluster in inflammation, led us to the SEB mediated 

activation of the PI3K/AKT signaling pathway via the suppression of Pten, a negative 

regulator of AKT signaling. We also found that overexpression of miR-132 was linked 

with repression of Foxo3, a regulator of T-cell proliferation and activation.  

 

Since SEB is a strong pro-inflammatory inducing agent, we sought to counter its effects 

with an equally potent anti-inflammatory compound, THC. In choosing this particular 

therapeutic agent, we were aware that some of its previously studied functions included 

its ability to decrease inflammatory cytokines, inhibit cellular proliferation and induce 

immunosuppressive cells such as the MDSCs or T-regs. Indeed, we demonstrated that 

THC could prevent SEB-triggered acute mortality of mice by ameliorating inflammation 
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and inducing T-regs, however, for the first time we established that it does so by 

modulating miRNA. In conclusion, our studies have helped understand that the miRNA 

control of gene expression lies at the heart of pro-inflammatory (SEB-induced) and anti-

inflammatory (THC-mediated) immune responses. By further studying the role of these 

small RNA molecules and their dynamic interaction with their target genes, we can better 

develop miRNA related therapeutics to prevent and treat inflammatory diseases.  
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